精英家教网 > 高中数学 > 题目详情

【题目】已知某运动员每次投篮命中的概率都是40%.现采用随机模拟的方法估计该运动员三次投篮恰有一次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数作为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907,966,191,925,271,932,812,458,569,683,431,257,393,027,556,488,730,113,537,989.据此估计,该运动员三次投篮恰有一次命中的概率为(  )
A.0.25
B.0.2
C.0.35
D.0.4

【答案】D
【解析】解:根据题意,因为1,2,3,4表示投篮命中,其它为不中,
当三次投篮恰有一次命中时,
就是三个数字xyz中只有一个数字在集合{1,2,3,4},
考查这20组数据,以下8个数据符合题意,按次序分别为:
925,458,683,257,027,488,730,537,
所以,其概率P(A)==0.4,
故选D.
当三次投篮恰有一次命中时,就是三个数字xyz中只有一个数字在集合{1,2,3,4},再逐个考察个数据即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知OPQ是半径为1,圆心角为 的扇形,C是扇形弧上的动点,ABCD是扇形的内接矩形.记∠COP=α,则矩形ABCD的面积最大是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】O为坐标原点,动点M在椭圆C 上,过M作x轴的垂线,垂足为N点P满足

(1) 求点P的轨迹方程;

(2)设点 在直线x=-3上,且.证明过点P且垂直于OQ的直线l过C的左焦点F.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为R的偶函数f(x)满足对于任意实数x,都有f(1+x)=f(1﹣x),且当0≤x≤1时,f(x)=3x+1
(1)求证:函数f(x)是周期函数;
(2)当x∈[1,3]时,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线y=a分别与曲线y=2(x+1),y=x+lnx交于A、B,则|AB|的最小值为( )
A.3
B.2
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系内,设M(x1 , y1)、N(x2 , y2)为不同的两点,直线l的方程为ax+by+c=0,设 .有下列四个说法:
①存在实数δ,使点N在直线l上;
②若δ=1,则过M、N两点的直线与直线l平行;
③若δ=﹣1,则直线l经过线段MN的中点;
④若δ>1,则点M、N在直线l的同侧,且直线l与线段MN的延长线相交.
上述说法中,所有正确说法的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】化简求值:
(1)(1+tan2θ)cos2θ
(2)已知 ,求2+sinθcosθ﹣cos2θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂家具车间造A、B型两类桌子,每张桌子需木工和漆工两道工序完成.已知木工做一张A、B型桌子分别需要1小时和2小时,漆工油漆一张A、B型桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张A、B型桌子分别获利润2千元和3千元,试问工厂每天应生产A、B型桌子各多少张,才能获得利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆M的圆心M在x轴上,半径为1,直线 ,被圆M所截的弦长为 ,且圆心M在直线l的下方.
(I)求圆M的方程;
(II)设A(0,t),B(0,t+6)(﹣5≤t≤﹣2),若圆M是△ABC的内切圆,求△ABC的面积S的最大值和最小值.

查看答案和解析>>

同步练习册答案