精英家教网 > 高中数学 > 题目详情
已知c>0,p:函数y=cx是R上的减函数;q:当x>0时,函数f(x)=x+
1
x
1
c
恒成立
.如果p∨q为真,且p∧q为假,求c的取值范围.
分析:根据指数函数的图象和性质可求出命题p为真命题时,c的取值范围,根据对勾函数的图象和性质,结合函数恒成立问题的解答思路,可求出命题q为真命题时,c的取值范围,进而根据p∨q为真命题,p∧q为假命题,可知p与q一真一假,分类讨论后,综合讨论结果,可得答案.
解答:解:∵若命题p:函数y=cx为减函数为真命题,则0<c<1
当x>0时,函数f(x)=x+
1
x
≥2,(当且仅当x=1时取等)
若命题q为真命题,则
1
c
<2,结合c>0可得:c>
1
2

根据复合命题真值表得:若p∨q为真命题,p∧q为假命题,故p与q一真一假;
当p真q假时,0<c≤
1
2

当p假q真时,c≥1
故c的范围为(0,
1
2
]∪[1,+∞).
点评:本题主要考查复合命题与简单命题的真假关系的应用,要求熟练掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知c>0,p:函数y=cx是R上的减函数;q:当x∈[
1
2
,2]
时,函数f(x)=x+
1
x
c2-
5
2
c+3
恒成立.若p、q一个是假命题,一个是真命题,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知c>0,p:函数y=cx是R上的减函数;q:当x∈[
1
2
,2]
时,函数f(x)=x+
1
x
c2-
5
2
c+3
恒成立.若p∧q为假命题且p∨q是真命题,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知c>0,设P:函数y=cx在R上单调递减,Q:不等式x+|x-2c|>1的解集为R,如果P和Q有且仅有一个正确,求c的取值范围.?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知c>0,设P:函数y=cx在R上单调递减,Q:不等式x+|x-2c|>1的解集为R.

如果P和Q有且仅有一个正确,求c的取值范围.

查看答案和解析>>

同步练习册答案