精英家教网 > 高中数学 > 题目详情

求曲线轴在区间上所围成阴影部分的面积S.

 

【答案】

4

【解析】

【错解分析】分两部分,在

因此所求面积为2+(-2)=0。

【正解】

【点评】面积应为各部分积分的代数和,也就是第二部分的积分不是阴影部分的面积,而是面积的相反数。所以不应该将两部分直接相加。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
12
x2-(1+a)x+alnx
,其中a>0.
(Ⅰ) 求函数f(x)的极小值点;
(Ⅱ)若曲线y=f(x)在点A(m,f(m)),B(n,f(n))处的切线都与y轴垂直,问是否存在常数a,使函数y=f(x)在区间[m,n]上存在零点?如果存在,求a的值:如果不存在,请说明理由.
请考生在22,23,24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B铅笔在答题卡把所选题目的题号涂黑.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)

Monte-Carlo方法在解决数学问题中有广泛的应用。下面是利用Monte-Carlo方法来计算定积分。考虑定积分,这时等于由曲线轴,所围成的区域M的面积,为求它的值,我们在M外作一个边长为1正方形OABC。设想在正方形OABC内随机投掷个点,若个点中有个点落入中,则的面积的估计值为,此即为定积分的估计值I。向正方形中随机投掷10000个点,有个点落入区域M

(1)若=2099,计算I的值,并以实际值比较误差是否在5%以内

(2)求的数学期望

(3)用以上方法求定积分,求I与实际值之差在区间(—0.01,0.01)的概率

附表:

n

1899

1900

1901

2099

2100

2101

P(n)

0.0058

0.0062

0.0067

0.9933

0.9938

0.9942

查看答案和解析>>

科目:高中数学 来源:2013届江西省高二下学期期中考试文科数学试卷(解析版) 题型:解答题

设函数,其中为自然对数的底数.

(1)求函数的单调区间;

(2)记曲线在点(其中)处的切线为轴、轴所围成的三角形面积为,求的最大值.

【解析】第一问利用由已知,所以

,得, 所以,在区间上,,函数在区间上单调递减; 在区间上,,函数在区间上单调递增;

第二问中,因为,所以曲线在点处切线为.

切线轴的交点为,与轴的交点为

因为,所以,  

, 在区间上,函数单调递增,在区间上,函数单调递减.所以,当时,有最大值,此时

解:(Ⅰ)由已知,所以, 由,得,  所以,在区间上,,函数在区间上单调递减; 

在区间上,,函数在区间上单调递增;  

即函数的单调递减区间为,单调递增区间为.

(Ⅱ)因为,所以曲线在点处切线为.

切线轴的交点为,与轴的交点为

因为,所以,  

, 在区间上,函数单调递增,在区间上,函数单调递减.所以,当时,有最大值,此时

所以,的最大值为

 

查看答案和解析>>

科目:高中数学 来源:宁夏银川一中2011-2012学年高三第六次月考试题(数学理) 题型:解答题

 

已知函数,其中.

 (Ⅰ) 求函数的极小值点;

(Ⅱ)若曲线在点处的切线都与轴垂直,问是否存在常数,使函数在区间上存在零点?如果存在,求的值:如果不存在,请说明理由.

 

请考生在22,23,24三题中任选一题做答,如果多做,则按所做的第一题记分.做答时用2B铅笔在答题卡把所选题目的题号涂黑

 

查看答案和解析>>

同步练习册答案