分析:(I)先求出其导函数以及导数为0的根,通过比较两根的大小找到函数的单调区间,进而求出f(x)的极小值;
(II)对于存在性问题,可先假设存在,即假设存在常数a,使函数y=f(x)在区间[m,n]上存在零点,再利用零点存在定理得出不等式:
lna≥+1,下面利用 导数证明此不等式不成立,出现矛盾,则说明假设不成立,即不存在;否则存在.
解答:解:(Ⅰ)
f′(x)=x-(1+a)+==令f'(x)=0,得到x
1=1,x
2=a.
(1)当a=1时,f(x)在定义域单调递增,没有极小值点.
(2)当a>1时,x变化时.f′(x),f(x)的变化情况如表:
所以x=1是函数的极大值点,x=a是函数的极小值点;
(3)当0<a<1时,x变化时.f′(x),f(x)的变化情况如表:
所以x=1是函数的极小值点,x=a是函数的极大值点;
综上所述.当0<a<1时,x=1是函数的极小值点;当a>1时,x=a是函数的极小值点;
(II)若曲线y=f(x)在点A(m,f(m)),B(n,f(n))处的切线都与y轴垂直,则f′(m)=0,f′(n)=0,
由(I)的讨论知,m=1,n=a或m=a,n=1,f(1)=-
-a,f(a)=-
-a+alna.
∴函数y=f(x)在区间[m,n]上存在零点,且单调,则有f(1)f(a)≤0,
即(-
-a)(-
-a+alna)≤0,
∴(
+a-alna)≤0,故
lna≥+1,
下面证明此不等式不成立.
令g(a)=
lna--1,则g′(a)=
-
=
,
于是当a∈(0,2),g′(a)>0,a∈(2,+∞),g′(a)<0,
所以,g(a)在(0,2)单调递增,在[2,+∞)单调递减,
所以函数
g(a)=lna--1在a=2取得最大值g(2)=ln2-2<0.
所以
g(a)=lna--1≤g(2)<0,所以
lna<+1.
故不存在满足要求的常数a.-------(12分)