精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
12
x2-(1+a)x+alnx
,其中a>0.
(Ⅰ) 求函数f(x)的极小值点;
(Ⅱ)若曲线y=f(x)在点A(m,f(m)),B(n,f(n))处的切线都与y轴垂直,问是否存在常数a,使函数y=f(x)在区间[m,n]上存在零点?如果存在,求a的值:如果不存在,请说明理由.
请考生在22,23,24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B铅笔在答题卡把所选题目的题号涂黑.
分析:(I)先求出其导函数以及导数为0的根,通过比较两根的大小找到函数的单调区间,进而求出f(x)的极小值;
(II)对于存在性问题,可先假设存在,即假设存在常数a,使函数y=f(x)在区间[m,n]上存在零点,再利用零点存在定理得出不等式:lna≥
a
2
+1
,下面利用 导数证明此不等式不成立,出现矛盾,则说明假设不成立,即不存在;否则存在.
解答:解:(Ⅰ)  f(x)=x-(1+a)+
a
x
=
x2-(1+a)x+a
x
=
(x-1)(x-a)
x

令f'(x)=0,得到x1=1,x2=a.
(1)当a=1时,f(x)在定义域单调递增,没有极小值点.
(2)当a>1时,x变化时.f′(x),f(x)的变化情况如表:

所以x=1是函数的极大值点,x=a是函数的极小值点;
(3)当0<a<1时,x变化时.f′(x),f(x)的变化情况如表:

所以x=1是函数的极小值点,x=a是函数的极大值点;
综上所述.当0<a<1时,x=1是函数的极小值点;当a>1时,x=a是函数的极小值点;
(II)若曲线y=f(x)在点A(m,f(m)),B(n,f(n))处的切线都与y轴垂直,则f′(m)=0,f′(n)=0,
由(I)的讨论知,m=1,n=a或m=a,n=1,f(1)=-
1
2
-a,f(a)=-
a2
2
-a+alna.
∴函数y=f(x)在区间[m,n]上存在零点,且单调,则有f(1)f(a)≤0,
即(-
1
2
-a)(-
a2
2
-a+alna)≤0,
∴(
a2
2
+a-alna)≤0,故lna≥
a
2
+1

下面证明此不等式不成立.
令g(a)=lna-
a
2
-1
,则g′(a)=
1
a
-
1
2
=
2-a
2a

于是当a∈(0,2),g′(a)>0,a∈(2,+∞),g′(a)<0,
所以,g(a)在(0,2)单调递增,在[2,+∞)单调递减,
所以函数g(a)=lna-
a
2
-1
在a=2取得最大值g(2)=ln2-2<0.
所以g(a)=lna-
a
2
-1≤g(2)<0
,所以lna<
a
2
+1

故不存在满足要求的常数a.-------(12分)
点评:本题第一问考查利用导函数来研究函数的极值.在利用导函数来研究函数的极值时,分三步①求导函数,②求导函数为0的根,③判断根左右两侧的符号,若左正右负,原函数取极大值;若左负右正,原函数取极小值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案