精英家教网 > 高中数学 > 题目详情
(2012•包头一模)如图,AB是底部B不可到达的一个塔型建筑物,A为塔的最高点.现需在对岸测出塔高AB,甲、乙两同学各提出了一种测量方法,甲同学的方法是:选与塔底B在同一水平面内的一条基线CD,使C,D,B三点不在同一条直线上,测出∠DCB及∠CDB的大小(分别用α,β表示测得的数据)以及C,D间的距离(用s表示测得的数据),另外需在点C测得塔顶A的仰角(用θ表示测量的数据),就可以求得塔离AB.乙同学的方法是:选一条水平基线EF,使E,F,B三点在同一条直线上.在E,F处分别测得塔顶A的仰角(分别用α,β表示测得的数据)以及E,F间的距离(用s表示测得的数据),就可以求得塔高AB.
请从甲或乙的想法中选出一种测量方法,写出你的选择并按如下要求完成测量计算:
①画出测量示意图;
②用所叙述的相应字母表示测量数据,画图时C,D,B按顺时针方向标注,E,F按从左到右的方向标注;
③求塔高AB.
分析:分别按照甲、乙的想法,构造三角形,利用正弦定理,即可求解.
解答:解:选甲,如图1,在△BCD中,∠CBD=π-α-β,由正弦定理可得
BC
sin∠BDC
=
CD
sin∠CBD

∴BC=
ssinβ
sin(α+β)

在直角△ABC中,AB=BCtan∠ACB=
stanθsinβ
sin(α+β)

选乙,如图2,
在△AEF中,∠EAF=β-α,由正弦定理可得
EF
sin(β-α)
=
AF
sinα

AF=
ssinα
sin(β-α)

在直角△ABF中,AB=AFsinβ=
ssinαsinβ
sin(β-α)

点评:本题考查正弦定理的运用,解题的关键是正确选择三角形,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•包头一模)在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2,AB=1.
(Ⅰ)求四棱锥P-ABCD的体积V;
(Ⅱ)若F为PC的中点,求证:平面PAC⊥平面AEF.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•包头一模)下列命题错误的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•包头一模)已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)与抛物线y2=8x有 一个公共的焦点F,且两曲线的一个交点为P,若|PF|=5,则双曲线方程为
x2-
y2
3
=1
x2-
y2
3
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•包头一模)函数f(x)=sin(ωx+?)(其中|?|<
π
2
)的图象如图所示,为了得到y=sinωx的图象,只需把y=f(x)的图象上所有点(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•包头一模)在平面直角坐标系xoy中,曲线C1的参数方程为 
x=acosφ
y=bsinφ
(a>b>0,?为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2是圆心在极轴上,且经过极点的圆.已知曲线C1上的点M(1,
3
2
)对应的参数φ=
π
3
,曲线C2过点D(1,
π
3
).
(Ⅰ)求曲线C1,C2的直角坐标方程;
(Ⅱ)若点A(ρ 1,θ),B(ρ 2,θ+
π
2
) 在曲线C1上,求
1
ρ
2
1
+
1
ρ
2
2
的值.

查看答案和解析>>

同步练习册答案