精英家教网 > 高中数学 > 题目详情

已知实数x=m满足不等式数学公式,试判断方程y2-2y+m2-3=0有无实根,并给出证明.

证明:,解得 x<-2.
方程y2-2y+m2-3=0的判别式△=4-4(m2-3)=4(4-m2),∵x=m<-2,∴m2>4,即4-m2<0,∴△<0.
∴方程y2-2y+m2-3=0无实根.
分析:根据对数函数的定义域求出x的范围,判断方程y2-2y+m2-3=0的判别式的符号,从而得到次方程的根的情况.
点评:本题考查对数函数的单调性和特殊点,一元二次方程的根的分布,由x的范围判断方程y2-2y+m2-3=0的
判别式△的符号是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知P={x|x2-8x-20≤0},Q={x||x-1|≤m},m∈R.
(1)若P∪Q=P,求实数m的取值范围;
(2)是否存在实数m,使得方程|x-1|=m至少有一个解x满足“x∈P”?若存在,求出m的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数a1,a2,a3不全为零,
(i)则
a1a2+2a2a3
a
2
1
+
a
2
2
+
a
2
3
的最大值为
 

(ii)设正数x,y满足x+y=2,令
xa1a2+ya2a3
a
2
1
+
a
2
2
+
a
2
3
的最大值为M,则M的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=kx,(k≠0)且满足f(x+1)•f(x)=x2+x,函数g(x)=ax,(a>0且a≠1).
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若函数f(x)为R上的增函数,h(x)=
f(x)+1
f(x)-1
(f(x)≠1)
,问是否存在实数m使得h(x)的定义域和值域都为[m,m+1]?若存在,求出m的值;若不存在,请说明理由;
(Ⅲ)已知关于x的方程g(2x+1)=f(x+1)•f(x)恰有一实数解为x0,且x0∈(
1
4
1
2
)
求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若定义在D上的函数y=f(x)满足条件:存在实数a,b(a<b)且[a,b]?D,使得:
①任取x0∈[a,b],有f(x0)=C(C是常数);
②对于D内任意y0,当y0∉[a,b],总有f(y0)<C.
我们将满足上述两条件的函数f(x)称为“平顶型”函数,称C为“平顶高度”,称b-a为“平顶宽度”.根据上述定义,解决下列问题:
(1)函数f(x)=-|x+2|-|x-3|是否为“平顶型”函数?若是,求出“平顶高度”和“平顶宽度”;若不是,简要说明理由.
(2)已知f(x)=mx-
x2+2x+n
,x∈[-2,+∞)
是“平顶型”函数,求出m,n的值.
(3)对于(2)中的函数f(x),若f(x)=kx在x∈[-2,+∞)上有两个不相等的根,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的一元二次方程x2+(4m+1)x+2m-1=0.
(1)求证:不论为任何实数,方程总有两个不相等的实数根;
(2)若方程的两根为x1,x2,且满足
1
x1
+
1
x2
=-
1
2
,求m的值.

查看答案和解析>>

同步练习册答案