精英家教网 > 高中数学 > 题目详情
17.阅读下列有关光线的入射与反射的两个事实现象,现象(1):光线经平面镜反射满足入射角i与反射角r相等(如图19-1);现象(2):光线从椭圆的一个焦点出发经椭圆反射后通过另一个焦点(如图19-2).试结合上述事实现象完成下列问题:
(1)有一椭圆型台球桌2a,长轴长为短轴长为2b.将一放置于焦点处的桌球击出,经过球桌边缘的反射(假设球的反射完全符合现象(2))后第一次返回到该焦点时所经过的路程记为S,求S的值(用a,b表示);
(2)结论:椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1上任一点P(x0,y0)处的切线l的方程为$\frac{{{x_0}x}}{a^2}$+$\frac{{{y_0}y}}{b^2}$=1.记椭圆C的方程为C:$\frac{x^2}{4}$+y2=1.
①过椭圆C的右准线上任一点M向椭圆C引切线,切点分别为A,B,求证:直线lAB恒过一定点;
②设点P(x0,y0)为椭圆C上位于第一象限内的动点,F1,F2为椭圆C的左右焦点,点I为△PF1F2的内心,直线PI与x轴相交于点N,求点N横坐标的取值范围.

分析 (1)因为桌球第一次与球桌边缘的接触点可能椭圆长轴的两个端点及这两个端点外的任一点三种情况,分别表示出S=2(a-c)或S=2(a+c)或S=4a;
(2)求得M点坐标,求得直线MA和MB的方程,将M点坐标代入,即可求得直线AB方程$\frac{\sqrt{3}}{3}$x+ty-1,直线AB恒过定点$F({\sqrt{3},0})$;求得椭圆的切线方程,由直线PI⊥l,${l_{PI}}:y=\frac{{4{y_0}}}{x_0}x-3{y_0}$,y=0,得点N的横坐标为${x_N}=\frac{{3{x_0}}}{4}$,根据x0的取值范围,即可求得点N横坐标的取值范围.

解答 解:(1)记$c=\sqrt{{a^2}-{b^2}}$,
因为桌球第一次与球桌边缘的接触点可能椭圆长轴的两个端点及这两个端点外的任一点三种情况,
所以S=2(a-c)或S=2(a+c)或S=4a;[(4分)]
(2)①设$M({\frac{{4\sqrt{3}}}{3},t})({t∈R}),A({{x_1},{y_1}}),B({{x_2},{y_2}})$,则…[(5分)],
${l_{MA}}:\frac{{{x_1}x}}{4}+{y_1}y=1,{l_{MB}}:\frac{{{x_2}x}}{4}+{y_2}y=1$,…[(6分)]
代入$M({\frac{{4\sqrt{3}}}{3},t})$,得${l_{MA}}:\frac{{\sqrt{3}}}{3}{x_1}+t{y_1}=1,{l_{MB}}:\frac{{\sqrt{3}}}{3}{x_2}+t{y_2}=1$,…[(7分)]
则点A,B的坐标均满足方程$\frac{{\sqrt{3}}}{3}x+ty=1,即{l_{AB}}:\frac{{\sqrt{3}}}{3}x+ty-1=0$,…[(9分)]
所以,直线AB恒过定点$F({\sqrt{3},0})$;…[(10分)]
②由(2)的结论知:椭圆C在P(x0,y0)处的切线l的方程为$\frac{{{x_0}x}}{4}+{y_0}y=1$,…[(11分)]
由事实现象(2)知:直线PI⊥l,
∴${l_{PI}}:y=\frac{{4{y_0}}}{x_0}x-3{y_0}$…[(13分)]
令y=0,得点N的横坐标为${x_N}=\frac{{3{x_0}}}{4}$,…[(15分)]
∵x0∈(0,2),
∴${x_N}∈({0,\frac{3}{2}})$.…[(16分)]

点评 本题考查椭圆方程的实际应用,考查直线与椭圆的位置关系,直线的切线方程,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{4}{3}$x3-2x2+ax+b的图象在点P(0,f(0))处的切线方程为y=2x+1.
(I)求实数a、b的值;
(Ⅱ)设g(x)=f(x)+$\frac{m}{2x-1}$是[1,+∞)上的增函数,
(i)求实数m的最大值;
(ii)当m取最大值时,是否存在点Q,使得过点Q的直线能与曲线y=g(x)围成两个封闭图形,则这两个封闭图形的面积总相等?若存在,求出点Q的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设函数f(x)=ax2+bx+c(a,b,c∈R且a>0),则“f(f(-$\frac{b}{2a}$))<0”是“f(x)与f(f(x))都恰有两个零点”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(Ⅰ)已知椭圆的长轴是短轴的3倍,且过点A(3,0),并且以坐标轴为对称轴,求椭圆的标准方程.
(Ⅱ)已知抛物线的顶点在原点,对称轴为x轴,抛物线上一点P(-3,a)到焦点的距离为5,求抛物线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设i为虚数单位,n为正整数,θ∈[0,2π).
(1)用数学归纳法证明:(cosθ+isinθ)n=cosnθ+isinnθ;
(2)已知z=$\sqrt{3}$+i,试利用(1)的结论计算z10
(3)设复数z=a+bi(a,b∈R,a2+b2≠0),求证:|zn|=|z|n(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知 m,n 为异面直线,m?平面α,n?平面 β,α∩β=l,则(  )
A.l与m,n都相交B.l与m,n中至少一条相交
C.l与m,n都不相交D.l只与m,n中一条相交

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.函数f(x)=(x+a)lnx,f′(1)=0,
(1)求f(x)的解析式;
(2)求y=f(x)在(e,f(e))处的切线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=-x3+ax2+bx(a,b∈R)的图象如图所示,它与x轴在原点相切,且x轴与函数图象所围成的区域(如图阴影部分)的面积为$\frac{1}{12}$,则a的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知抛物线Γ:y=x2及抛物线Γ上的一点A(2,4).
(1)求抛物线Γ在点A处的切线l的方程;
(2)求抛物线Γ及切线l与x轴所围成图形的面积.

查看答案和解析>>

同步练习册答案