分析 (1)求导数,可得切线斜率,从而可得该抛物线在点A处的切线l的方程;
(2)利用定积分可求曲线C、直线l和x轴所围成的图形的面积.
解答
解:(1)k切=y'|x=2=2x|x=2=4,…(2分)
切点A(2,4),所以切线l的方程为y-4=4(x-2)
即y=4x-4…(4分)
(2)令y=0,则x=1,所以切线与x轴的交点为B(1,0)…(5分)
所以$S=\int_0^1{x^2}dx+\int_1^2{({x^2}}-4x+4)dx$…(7分)
=$\left.{\frac{1}{3}{x^3}}\right|_0^1+(\left.{\frac{1}{3}{x^3}-2{x^2}+4x)}\right|_1^2$…(8分)
=$\frac{1}{3}+\frac{1}{3}=\frac{2}{3}$…(10分)
点评 本题考查导数的几何意义,考查了定积分在求面积中的应用,以及定积分的计算,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-e) | B. | (-∞,-e] | C. | (-e,0) | D. | [-e,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (2,8,4) | B. | (1,3,6) | C. | (5,8,9) | D. | (-2,7,4) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(-∞,\frac{1}{2})$ | B. | (-∞,-1) | C. | ($\frac{1}{2}$,+∞) | D. | (-∞,-1)∪(2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com