【题目】已知椭圆
的左、右焦点分别为
,其离心率
,焦距为4.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若
是椭圆上不重合的四个点,且满足
∥
,
∥
,
,求
的最小值.
科目:高中数学 来源: 题型:
【题目】已知
.
(1)当
时,解不等式
;
(2)若关于
的方程
的解集中恰好有一个元素,求实数
的值;
(3)设
,若对任意
,函数
在区间
上的最大值与最小值的差不超过
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动点
到定直线
的距离比到定点
的距离大
.
(1)求动点
的轨迹
的方程;
(2)过点
的直线交轨迹
于
,
两点,直线
,
分别交直线
于点
,
,证明以
为直径的圆被
轴截得的弦长为定值,并求出此定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位共有10名员工,他们某年的收入如下表:
员工编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
年薪(万元) | 4 | 4.5 | 6 | 5 | 6.5 | 7.5 | 8 | 8.5 | 9 | 51 |
(1)求该单位员工当年年薪的平均值和中位数;
(2)已知员工年薪收入与工作年限成正相关关系,某员工工作第一年至第四年的年薪分别为4万元、5.5万元、6万元、8.5万元,预测该员工第六年的年薪为多少?
附:线性回归方程
中系数计算公式分别为:
,
,其中
、
为样本均值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数![]()
.
(Ⅰ)求函数
的单调区间;
(Ⅱ)记函数
的图象为曲线
.设点
,
是曲线
上的不同两点.如果在曲线
上存在点
,使得:①
;②曲线
在点
处的切线平行于直线
,则称函数
存在“中值相依切线”.试问:函数
是否存在“中值相依切线”,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经观测,某公路段在某时段内的车流量
(千辆/小时)与汽车的平均速度
(千米/小时)之间有函数关系:
.
(1)在该时段内,当汽车的平均速度
为多少时车流量
最大?最大车流量为多少?(精确到0.01)
(2)为保证在该时段内车流量至少为10千辆/小时,则汽车的平均速度应控制在什么范围内?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com