精英家教网 > 高中数学 > 题目详情
精英家教网如图,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的焦点和上顶点分别为F1、F2、B,我们称△F1BF2为椭圆C的特征三角形.如果两个椭圆的特征三角形是相似的,则称这两个椭圆是“相似椭圆”,且三角形的相似比即为椭圆的相似比.
(1)已知椭圆C1
x2
4
+y2=1和C2
x2
16
+
y2
4
=1,判断C2与C1是否相似,如果相似则求出C2与C1的相似比,若不相似请说明理由;
(2)已知直线l:y=x+1,在椭圆Cb上是否存在两点M、N关于直线l对称,若存在,则求出函数f(b)=|MN|的解析式.
分析:(1)椭圆C2与C1相似.先求得椭圆C2与椭圆C1的特征三角形的腰长和底边长,可发现两特征三角形相似,进而可判断两椭圆相似.
(2)先假设存在,得到点M,N的直线方程和中点坐标,然后联立椭圆和直线消去y得到关于y的一元二次方程,根据韦达定理可得到两根之和,即得到MN中点x0的值,代入到直线可确定y0的值,再由MN的中点在直线上可求得t的值.
解答:解:(1)椭圆C2与C1相似.
因为C2的特征三角形是腰长为4,底边长为2
3
的等腰三角形,
而椭圆C1的特征三角形是腰长为2,底边长为
3
的等腰三角形,
因此两个等腰三角形相似,且相似比为2:1
(2)假定存在,则设M、N所在直线为y=-x+t,MN中点为(x0,y0).
y=-x+t
x2
4b2
+
y2
b2
=1
∴5x2-8xt+4(t2-b2)=0.
所以x0=
x1+x2
2
=
4t
5
,y0=
t
5

中点在直线y=x+t上,所以有t=-
5
3
点评:本题主要考查椭圆的基本性质的简单应用和直线与椭圆的综合问题.直线与圆锥曲线是高考的重点问题,经常以压轴题的形式出现,一定要引起重视.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知椭圆C:
x2
a2
+
y2
b2
=1的离心率为
3
2
,过椭圆C上一点P(2,1)作倾斜角互补的两条直线,分别与椭圆交于点A、B,直线AB与x轴交于点M,与y轴负半轴交于点N.
(Ⅰ)求椭圆C的方程:
(Ⅱ)若S△PMN=
3
2
,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆C:
x2
36
+
y2
20
=1的左顶点,右焦点分别为A,F,右准线为l,N为l上一点,且在x轴上方,AN与椭圆交于点M.
(1)若AM=MN,求证:AM⊥MF;
(2)过A,F,N三点的圆与y轴交于P,Q两点,求PQ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)如图,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
3
2
,以椭圆C的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0),设圆T与椭圆C交于点M与点N.
(1)求椭圆C的方程;
(2)求
TM
TN
的最小值,并求此时圆T的方程;
(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与x轴交于点R,S,O为坐标原点,求证:|OR|•|OS|为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的左顶点,右焦点分别为A、F,右准线为m.圆D:x2+y2+x-3y-2=0.
(1)若圆D过A、F两点,求椭圆C的方程;
(2)若直线m上不存在点Q,使△AFQ为等腰三角形,求椭圆离心率的取值范围.
(3)在(1)的条件下,若直线m与x轴的交点为K,将直线l绕K顺时针旋转
π
4
得直线l,动点P在直线l上,过P作圆D的两条切线,切点分别为M、N,求弦长MN的最小值.

查看答案和解析>>

同步练习册答案