精英家教网 > 高中数学 > 题目详情
17.已知圆O:x2+y2=1,点P(-1,2),过点P作圆O的切线,切点为A,求直线AB的一般式方程.

分析 求出以P(-1,2)、C(0,0)为直径的圆的方程,将两圆的方程相减可得公共弦AB的方程

解答 解:圆x2+y2=1的圆心为C(0,0),半径为1,
以P(-1,2)、C(0,0)为直径的圆的方程为(x+0.5)2+(y-1)2=1.25,
将两圆的方程相减可得公共弦AB的方程x-2y+1=0.

点评 本题考查直线和圆的位置关系以及圆和圆的位置关系、圆的切线性质,体现了数形结合的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.命题“若a>1,则a>0”的逆命题是(  )
A.若a>0,则a>1B.若a≤0,则a>1C.若a>0,则a≤1D.若a≤0,则a≤1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数$f(x)=cosx(sinx+\sqrt{3}cosx)-\frac{{\sqrt{3}}}{2}$,x∈R.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)若x∈(0,π),求函数f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=$\left\{\begin{array}{l}{-\frac{1}{x},x≥1}\\{{2}^{x},x<1}\end{array}\right.$,且f(a)+f(2)=0,则实数a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}满足an=3n-2,f(n)=$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$,g(n)=f(n2)-f(n-1),n∈N*
(1)求证:g(2)>$\frac{1}{3}$;
(2)求证:当n≥3时,g(n)>$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.以点P(3,4)和点Q(-5,6)为一条直径的两个端点的圆的方程是(x+1)2+(y-5)2=17.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.对于曲线C:f(x,y)=0,若存在非负实常数M和m,使得曲线C上任意一点P(x,y)有m≤|OP|≤M成立(其中O为坐标原点),则称曲线C为既有外界又有内界的曲线,简称“有界曲线”,并将最小的外界M0成为曲线C的外确界,最大的内界m0成为曲线C的内确界.
(1)曲线y2=4x与曲线(x-1)2+y2=4是否为“有界曲线”?若是,求出其外确界与内确界;若不是,请说明理由;
(2)已知曲线C上任意一点P(x,y)到定点F1(-1,0),F2(1,0)的距离之积为常数a(a>0),求曲线C的外确界与内确界.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=sin(2x+φ)(0<φ<π),若将函数y=f(x)的图象向左平移$\frac{π}{6}$个单位后所得图象对应的函数为偶函数,则实数φ的值为$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知三角形ABC的三个顶点均在椭圆4x2+5y2=80上,且点A是椭圆短轴的一个端点(点M在y轴正半轴上).
(1)若三角形ABC的重心是椭圆的右焦点,试求直线BC的方程;
(2)若角A为90°,AD垂直BC于D,试求点D的轨迹方程.

查看答案和解析>>

同步练习册答案