精英家教网 > 高中数学 > 题目详情
5.已知sinθ+cosθ=$\frac{1}{5}$,θ∈(0,π).
(1)求tanθ的值;
(2)求$\frac{1+sin2θ+cos2θ}{1+sin2θ-cos2θ}$的值.

分析 由条件利用同角三角函数的基本关系、以及三角函数在各个象限中的符号,先求的sinθ-cosθ的值,可得sinθ和cosθ的值,从而求得要求式子的值.

解答 解:(1)∵sinθ+cosθ=$\frac{1}{5}$,θ∈(0,π),
∴1+2sinθcosθ=$\frac{1}{25}$,即sinθcosθ=-$\frac{12}{25}$<0,
∴sinθ>0,cosθ<0.
∴sinθ-cosθ=$\sqrt{{(sinθ-cosθ)}^{2}}$=$\sqrt{1-2sinθcosθ}$=$\frac{7}{5}$,
∴sinθ=$\frac{4}{5}$,cosθ=-$\frac{3}{5}$,
∴tanθ=$\frac{sinθ}{cosθ}$=-$\frac{4}{3}$.
(2)$\frac{1+sin2θ+cos2θ}{1+sin2θ-cos2θ}$=$\frac{2sinθcosθ+{2cos}^{2}θ}{2sinθcosθ+{2sin}^{2}θ}$=$\frac{cosθ}{sinθ}$=$\frac{1}{tanθ}$=-$\frac{3}{4}$.

点评 本题主要考查同角三角函数的基本关系、以及三角函数在各个象限中的符号,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.如图,正四棱锥S-ABCD的底面边长为2,E,F分别为SA,SD的中点.
(1)证明:EF∥平面SBC;
(2)若平面BEF⊥平面SAD,求S-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设p:x≤k,q:1≤x<2,若p是q的必要条件,则实数k的取值范围是k≥2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知公差不为0的等差数列{an}的前n项和为Sn,且S3=9,a1,a3,a7成等比数列.
(1)求数列{an}的通项公式;
(2)数列{bn}满足bn=(an-1)2n,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知$\overrightarrow{a}$,$\overrightarrow{b}$是两个不共线的平面向量,向量$\overrightarrow{AB}$=λ$\overrightarrow{a}$+$\overrightarrow{b}$,$\overrightarrow{AC}$=$\overrightarrow{a}$-μ$\overrightarrow{b}$(λ,μ∈R),若$\overrightarrow{AB}$∥$\overrightarrow{AC}$,则有(  )
A.λ+μ=2B.λ-μ=1C.λμ=-1D.λμ=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某校高一(1)班共有40人,学号依次为1,2,3,…,40,现用系统抽样的方法抽取一个容量为5的样本,若学号为2,10,18,34的同学在样本中,则还有一个同学的学号应为(  )
A.27B.26C.25D.24

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则(  )
A.ω=2,φ=$\frac{π}{6}$B.ω=2,φ=$\frac{π}{3}$C.ω=1,φ=$\frac{π}{6}$D.ω=1,φ=$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等差数列{an}的前n项和为Sn,等比数列{bn}的各项均为正数,满足:a1=b1=1,a5=b3,且S3=9.
(1)求数列{an}和{bn}的通项公式;
(2)求$\frac{1}{{S}_{1}+1}$+$\frac{1}{{S}_{2}+1}$+…+$\frac{1}{{S}_{n}+n}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设函数f(x)的导函数为f′(x),且2 f'(x)<f (x)(x∈R),f(2)=e (e为自然对数的底数),则不等式f (lnx)>x${\;}^{\frac{1}{2}}$的解集为(0,e2).

查看答案和解析>>

同步练习册答案