精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则(  )
A.ω=2,φ=$\frac{π}{6}$B.ω=2,φ=$\frac{π}{3}$C.ω=1,φ=$\frac{π}{6}$D.ω=1,φ=$\frac{π}{3}$

分析 由周期求出ω,由五点法作图求出φ的值.

解答 解:根据函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分图象,
可得$\frac{1}{4}$•$\frac{2π}{ω}$=$\frac{7π}{12}$-$\frac{π}{3}$,∴ω=2.
再根据五点法作图可得2×$\frac{π}{3}$+φ=π,可得φ=$\frac{π}{3}$,
故选:B.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由五点法作图求出φ的值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.“m<1”是“函数y=x2+$\frac{m}{x}$在[1,+∞)单调递增”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知数列{an}的前n项和为Sn=n(2n+1),则a2=7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知sinθ+cosθ=$\frac{1}{5}$,θ∈(0,π).
(1)求tanθ的值;
(2)求$\frac{1+sin2θ+cos2θ}{1+sin2θ-cos2θ}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知某种彩票发行1000000张,中奖率为0.001,则下列说法正确的是(  )
A.买1张肯定不中奖B.买1000张一定能中奖
C.买1000张也不一定能中奖D.买1000张一定恰有1张能中奖

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.为了增强市民的环境保护组织,某市面向全市征召n名义务宣传志愿者,成立环境保护宣传组织,现按年龄把该组织的成员分成5组:[20,25),[25,30),[30,35),[35,40),[40,45]. 得到的频率分布直方图如图所示,已知该组织的成员年龄在[35,40)内有20人
(1)求该组织的人数;
(2)若从该组织年龄在[20,25),[25,30),[30,35)内的成员中用分层抽样的方法共抽取14名志愿者参加某社区的宣传活动,问应各抽取多少名志愿者?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,网络纸上正方形的边长为l,粗线画出的是某几何体的三视图,则该几何体的外接球表面积为(  )
A.12πB.34πC.$\frac{17π}{4}$D.17π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图已知四棱锥P-ABCD的底面ABCD是边长为2的正方形,PD⊥底面ABCD,E,F分别为棱BC、AD的中点
(1)若PD=1,求异面直线PB和DE所成角的余弦值;
(2)若四棱锥P-ABCD的体积为$\frac{8}{3}$,求四棱锥P-ABCD全面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知f(α)=$\frac{cos(π-α)sin(\frac{3}{2}π+α)}{cosα}$.
(1)若α为第二象限角且f(α)=-$\frac{3}{5}$,求$\frac{sin2α+cos2α+1}{1+tanα}$的值;
(2)若5f(α)=4f(3α+2β).试问tan(2α+β)•tan(α+β)是否为定值(其中α≠kπ+$\frac{π}{2}$,α+β≠kπ+$\frac{π}{2}$,2α+β≠kπ+$\frac{π}{2}$,3α+2β≠kπ+$\frac{π}{2}$,k∈Z)?若是,请求出定值;否则,说明理由.

查看答案和解析>>

同步练习册答案