精英家教网 > 高中数学 > 题目详情
已知向量a=3e1-2e2,b=4e1+e2,其中e1=(1,0),e2=(0,1).

求:(1)a·b;|a+b|;(2)ab的夹角的余弦值.

解:(1)∵a=3e1-2e2=3(1,0)-2(0,1)=(3,0)-(0,2)=(3,-2)

b=4e1+e2=4(1,0)+(0,1)=(4,0)+(0,1)=(4,1).

a·b=4×3+(-2)×1=10.

a+b=(7,-1).

∴|a+b|=

(2)设a·b的夹角为θ

则cosθ=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=3
e
1-2
e
2
b
=4
e
1+
e
2,其中
e
1=(1,0),
e
2=(0,1),求:
(1)
a
b
和|
a
+
b
|的值;
(2)
a
b
夹角θ的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=3
e1
-2
e2
b
=4
e1
+
e2
,其中
e1
e2
是互相垂直的单位向量求:
(1)
a
b
|
a
+
b
|

(2)
a
b
夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知向量
a
=3
e
1-2
e
2
b
=4
e
1+
e
2,其中
e
1=(1,0),
e
2=(0,1),求:
(1)
a
b
和|
a
+
b
|的值;
(2)
a
b
夹角θ的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知向量
a
=3
e1
-2
e2
b
=4
e1
+
e2
,其中
e1
e2
是互相垂直的单位向量求:
(1)
a
b
|
a
+
b
|

(2)
a
b
夹角的余弦值.

查看答案和解析>>

同步练习册答案