精英家教网 > 高中数学 > 题目详情

在△ABC中,若b2sin2C+c2sin2B=2bccosBcosC,则△ABC是


  1. A.
    等边三角形
  2. B.
    等腰三角形
  3. C.
    直角三角形
  4. D.
    等腰直角三角形
C
分析:利用正弦定理化简已知的等式,根据sinBsinC不为0,在等式两边同时除以sinBsinC,移项后再根据两角和与差的余弦函数公式化简,可得出cos(B+C)=0,根据B和C都为三角形的内角,可得两角之和为直角,从而判断出三角形ABC为直角三角形.
解答:根据正弦定理===2R,得到a=2RsinA,b=2RsinB,c=2RsinC,
代入已知的等式得:(2RsinB)2sin2C+(2RsinC)2sin2B=8R2sinBsinCcosBcosC,
即sin2Bsin2C+sin2Csin2B=2sinBsinCcosBcosC,又sinBsinC≠0,
∴sinBsinC=cosBcosC,
∴cosBcosC-sinBsinC=cos(B+C)=0,又B和C都为三角形的内角,
∴B+C=90°,
则△ABC为直角三角形.
故选C
点评:此题考查了三角形的形状判断,涉及的知识有正弦定理,两角和与差的余弦函数公式,以及特殊角的三角函数值,正弦定理解决了边角的关系,是本题的突破点,学生在化简求值时特别注意角度的范围.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,若b2+c2=a2+bc,则A=(  )
A、30°B、45°C、60°D、120°

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若b2+c2-a2=-
3
bc
,则A=
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若  b2+c2-a2=bc,则A=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若b2+c2-
2
bc=a2,且
a
b
=
2
,则C等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若b2=ac,c=2a,则cosB等于(  )

查看答案和解析>>

同步练习册答案