【题目】已知函数
,
.
(1)当
时,求曲线
在点
处的切线方程;
(2)当
时,求证:函数
恰有两个零点.
科目:高中数学 来源: 题型:
【题目】某公司有1000名员工,其中男性员工400名,采用分层抽样的方法随机抽取100名员工进行5G手机购买意向的调查,将计划在今年购买5G手机的员工称为“追光族",计划在明年及明年以后才购买5G手机的员工称为“观望者”,调查结果发现抽取的这100名员工中属于“追光族”的女性员工和男性员工各有20人.
(1)完成下列
列联表,并判断是否有95%的把握认为该公司员工属于“追光族"与“性别"有关;
属于“追光族" | 属于“观望者" | 合计 | |
女性员工 | |||
男性员工 | |||
合计 | 100 |
(2)已知被抽取的这100名员工中有10名是人事部的员工,这10名中有3名属于“追光族”.现从这10名中随机抽取3名,记被抽取的3名中属于“追光族”的人数为随机变量X,求
的分布列及数学期望.
附
,其中![]()
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,直线
经过点
,其倾斜角为
,以原点
为极点,以
轴非负半轴为极轴,与直角坐标系
取相同的长度单位,建立极坐标系,设曲线
的参数方程为
(
为参数),曲线
的极坐标方程为
.
(1)求曲线
的普通方程和极坐标方程;
(2)若直线
与曲线
有公共点,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市教育部门为了了解全市高一学生的身高发育情况,从本市全体高一学生中随机抽取了100人的身高数据进行统计分析。经数据处理后,得到了如下图1所示的频事分布直方图,并发现这100名学生中,身不低于1.69米的学生只有16名,其身高茎叶图如下图2所示,用样本的身高频率估计该市高一学生的身高概率.
![]()
(I)求该市高一学生身高高于1.70米的概率,并求图1中
的值.
(II)若从该市高一学生中随机选取3名学生,记
为身高在
的学生人数,求
的分布列和数学期望;
(Ⅲ)若变量
满足
且
,则称变量
满足近似于正态分布
的概率分布.如果该市高一学生的身高满足近似于正态分布
的概率分布,则认为该市高一学生的身高发育总体是正常的.试判断该市高一学生的身高发育总体是否正常,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题一“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为
,若将军从点
处出发,河岸线所在直线方程为
,并假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程为( ).
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法错误的是( )
A.命题“若
,则
”的逆否命题为“若
,则
”
B.命题“
,
”是假命题
C.若命题
、
均为假命题,则命题
为真命题
D.若
是定义在R上的函数,则“
”是“
是奇函数”的必要不允分条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,且过点
是椭圆的左、右顶点,直线
过
点且与
轴垂直.
![]()
(1)求椭圆
的标准方程;
(2)设
是椭圆
上异于
的任意一点,作
轴于点
,延长
到点
使得
,连接
并延长交直线
于
点,
点为线段
的中点,判断直线
与以
为直径的圆
的位置关系,并证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com