精英家教网 > 高中数学 > 题目详情

公差不为零的等差数列{}中,,又成等比数列.
(I) 求数列{}的通项公式.
(II)设,求数列{}的前n项和.

(I)(II)

解析试题分析:(I)设公差为d(d),由已知得:,又因为,所以,从而得通项公式;(II)由(1)得,因为,知数列{}为等比数列,可得前n项和.
试题解析:(1)设公差为d(d)由已知得:
又因为,所以, 所以                    6分
(2)由(1)得,因为,所以是以为首项,以8为公比的等比数列,所以.                                               12分
考点:1、等差数列的通项公式;2、等比数列的性质及前n项和公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

称满足以下两个条件的有穷数列阶“期待数列”:
;②.
(1)若等比数列阶“期待数列”,求公比q及的通项公式;
(2)若一个等差数列既是阶“期待数列”又是递增数列,求该数列的通项公式;
(3)记n阶“期待数列”的前k项和为
(i)求证:
(ii)若存在使,试问数列能否为n阶“期待数列”?若能,求出所有这样的数列;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为数列的前项和,对任意的,都有为正常数).
(1)求证:数列是等比数列;
(2)数列满足,求数列的通项公式;
(3)在满足(2)的条件下,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列满足 
(Ⅰ)求数列的通项公式;
(Ⅱ)令,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和为的等差中项().
(Ⅰ)证明数列为等比数列;
(Ⅱ)求数列的通项公式;
(Ⅲ)是否存在正整数,使不等式)恒成立,若存在,求出的最大值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列中,,前
(Ⅰ)求证:数列是等差数列; (Ⅱ)求数列的通项公式;
(Ⅲ)设数列的前项和为,是否存在实数,使得对一切正整数都成立?若存在,求的最小值,若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列{an}是等差数列,数列{bn}的前n项和Sn满足
(Ⅰ)求数列{an}和{bn}的通项公式:
(Ⅱ)设Tn为数列{Sn}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和为 ,对于任意的恒有    
(1) 求数列的通项公式 
(2)若证明: 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的首项,且
①设,求证:数列为等差数列;②设,求数列的前项和

查看答案和解析>>

同步练习册答案