精英家教网 > 高中数学 > 题目详情
计算:1+2=
2(2+1)
2
,1+2+3=
3(3+1)
2
,1+2+3+4=
4(4+1)
2
,…,1+2+3+…+n=
n(n+1)
2
.以上运用的是什么形式的推理?
归纳推理
归纳推理
分析:根据已知题目中四个1+2=
2(2+1)
2
,1+2+3=
3(3+1)
2
,1+2+3+4=
4(4+1)
2
,…,1+2+3+…+n=
n(n+1)
2
的关系,我们分析其规律,经过归纳后即可得到的结论,根据归纳推理的概念可知其是什么形式的推理.
解答:解:通过观察个别情况1+2=
2(2+1)
2
,1+2+3=
3(3+1)
2
,1+2+3+4=
4(4+1)
2
,…,发现某些相同性质;推出一个明确表达的一般性命题1+2+3+…+n=
n(n+1)
2
,这种推理形式叫做归纳推理,
故答案为:归纳推理.
点评:归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在计算“1×2+2×3+…+n(n+1)”时,有如下方法:
先改写第k项:k(k+1)=
1
3
[k(k+1)(k+2)-(k-1)k(K+1)],
由此得:1×2=
1
3
(1×2×3-0×1×2),
2×3=
1
3
(2×3×4-1×2×3),…,
n(n+1)=
1
3
[n(n+1)(n+2)-(n-1)n(n+1)],
相加得:1×2+2×3+…+n(n+1)=
1
3
n
(n+1)(n+2).
类比上述方法,请你计算“1×3+2×4+…+n(n+2)”,其结果写成关于n的一次因式的积的形式为:
1
6
n(n+1)(2n+7)
1
6
n(n+1)(2n+7)

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:1;1-4;1-4+9;1-4+9-16…各项的值,可以猜测:n∈N*,1-4+9-16+…+(-1)n+1n2=
1-4+9-16+…+(-1)n+1•n2=(-1)n+1•(1+2+3+…+n)
1-4+9-16+…+(-1)n+1•n2=(-1)n+1•(1+2+3+…+n)

查看答案和解析>>

科目:高中数学 来源:2013年全国普通高等学校招生统一考试文科数学(新课标1卷解析版) 题型:解答题

(本小题满分共12分)为了比较两种治疗失眠症的药(分别成为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h)实验的观测结果如下:

服用A药的20位患者日平均增加的睡眠时间:

0.6   1.2   2.7   1.5    2.8   1.8   2.2   2.3    3.2   3.5

2.5   2.6   1.2   2.7    1.5   2.9   3.0   3.1    2.3   2.4

服用B药的20位患者日平均增加的睡眠时间:

3.2    1.7     1.9     0.8     0.9    2.4     1.2     2.6     1.3     1.4

1.6    0.5     1.8     0.6     2.1    1.1     2.5     1.2     2.7     0.5

(1)分别计算两组数据的平均数,从计算结果来看,哪种药的效果好?

(2)完成茎叶图,从茎叶图来看,哪种药疗效更好?

 

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

在计算“1×2+2×3+…+n(n+1)”时,有如下方法:
先改写第k项:k(k+1)=数学公式[k(k+1)(k+2)-(k-1)k(K+1)],
由此得:1×2=数学公式(1×2×3-0×1×2),
2×3=数学公式(2×3×4-1×2×3),…,
n(n+1)=数学公式[n(n+1)(n+2)-(n-1)n(n+1)],
相加得:1×2+2×3+…+n(n+1)=数学公式(n+1)(n+2).
类比上述方法,请你计算“1×3+2×4+…+n(n+2)”,其结果写成关于n的一次因式的积的形式为:________.

查看答案和解析>>

同步练习册答案