精英家教网 > 高中数学 > 题目详情
求所有的整数对(),使得

解析:对于每组解(),显然,且也是解.时给出两组解

>0,原式化为同为偶数且只有一个被4整除.故,且可令,其中为正的奇数,.代入化简得

.不满足上式.

故必,此时,解得.但不符合,只有

因此共有4组整数解

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax2-2
4+2b-b2
•x
g(x)=-
1-(x-a)2
(a, b∈R)

(1)当b=0时,若f(x)在(-∞,2]上单调递减,求a的取值范围;
(2)求满足下列条件的所有整数对(a,b):存在x0,使得f(x0)是f(x)的最大值,g(x0)是g(x)的最小值;
(3)对满足(II)中的条件的整数对(a,b),试构造一个定义在D=x|x∈R且x≠2k,k∈Z上的函数h(x),使h(x+2)=h(x),且当x∈(-2,0)时,h(x)=f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知前n项和为Sn的等差数列{an}的公差不为零,且a2=3,又a4,a5,a8成等比数列.
(1)求数列{an}的通项公式;
(2)是否存在正整数对(n,k),使得nan=kSn?若存在,求出所有正整数对(n,k);若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项均为正数的等比数列{an}满足a2•a4=a6
2
a3
+
1
a4
=
1
a5

(Ⅰ)求数列{an}的通项公式an
(Ⅱ)设数列{an}的前n项和为Sn,前n项积为Tn,求所有的正整数k,使得对任意的n∈N*,不等式Sn+K+
Tn
4
<1
恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•杨浦区二模)(理)已知向量
a
=(x2+1,-x)
b
=(1,2
n2+1
)
(n为正整数),函数f(x)=
• 
,设f(x)在(0,+∞)上取最小值时的自变量x取值为an
(1)求数列{an}的通项公式;
(2)已知数列{bn},对任意正整数n,都有bn•(4an2-5)=1成立,设Sn为数列{bn}的前n项和,求
lim
n→∞
Sn

(3)在点列A1(1,a1)、A2(2,a2)、A3(3,a3)、…、An(n,an)、…中是否存在两点Ai,Aj(i,j为正整数)使直线AiAj的斜率为1?若存在,则求出所有的数对(i,j);若不存在,请你写出理由.

查看答案和解析>>

同步练习册答案