精英家教网 > 高中数学 > 题目详情

已知正四棱柱中,.
(1)求证:
(2)求二面角的余弦值;
(3)在线段上是否存在点,使得平面平面,若存在,求出的值;若不存在,请说明理由.

(1)详见解析;(2)(3)存在,

解析试题分析:(1)可证平面,从而可得。(2)(空间向量法)以为原点建立空间直角坐标系,如图。根据边长可得各点的坐标,从而可得各向量的坐标,根据向量垂直数量积为0可求平面的法向量,由(1)知平面,所以即为平面的法向量,先求两法向量所成角的余弦值,但应注意两法向量所成的角与二面角的平面角相等或互补,观察可知此二面角为钝角,所以此二面角的余弦值应为负数。(3)设为线段上一点,且,根据向量共线,可用表示出点坐标。分别求两个面的法向量,两面垂直,则两法向量也垂直,即数量积为0,从而可得的值,若所得内说明存在点满足条件,否则说明不存在。
证明:(1)因为为正四棱柱,
所以平面,且为正方形.                   1分
因为平面
所以.                                   2分
因为,
所以平面.                                      3分
因为平面,
所以.                                           4分
(2)如图,以为原点建立空间直角坐标系.则

               5分
所以.                       
设平面的法向量.
所以 .即  6分
,则.
所以.
由(1)可知平面的法向量为.                  7分
所以.                           8分
因为二面角为钝二面角,
所以二面角的余弦值为.                     9分
(3)设为线段

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,底面是平行四边形,平面的中点.
(1)求证:平面
(2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱柱中,.为平行四边形,, , 分别是的中点.

(1)求证:;
(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

直三棱柱的底面为等腰直角三角形,分别是的中点。求异面直线所成角的大小。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,底面为平行四边形,
底面
(1)证明:平面平面;
(2)若二面角大小为,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,⊥底面,底面为菱形,点为侧棱上一点.
(1)若,求证:平面; 
(2)若,求证:平面⊥平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,底面的中点, 的中点,.

(1)求证:平面
(2)求与平面成角的正弦值;
(3)设点在线段上,且平面,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在圆锥中,已知的直径的中点.

(1)证明:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的多面体中,四边形为正方形,四边形是直角梯形,平面

(1)求证:平面
(2)求平面与平面所成的锐二面角的大小.

查看答案和解析>>

同步练习册答案