精英家教网 > 高中数学 > 题目详情

在如图所示的多面体中,四边形为正方形,四边形是直角梯形,平面

(1)求证:平面
(2)求平面与平面所成的锐二面角的大小.

(1)证明见解析;(2)

解析试题分析:本题中由于垂直关系较多,由题意易得两两相互垂直,因此可以他们分别为轴建立空间直角坐标系,若设,则
这样第(1)题证明线面垂直,计算出,就能证得结论;而第(2)题只要求出平面和平面的法向量,这两个法向量的夹角与所求二面角一定是相等或互补,其中平面是坐标平面平面,其法向量可取,从而只要再求一个法向量即可.当然如果不用空间向量,也可直接证明,第(1)题只要用平面几何知识在直角梯形中证得,又有,线面垂直易得,为此取中点,可得是正方形,,接着可得,正好辅助线就是所求二面角的棱,可证就是平面角,这个角是
试题解析:(1)由已知,两两垂直,可以为原点,所在直线分别为轴、轴、轴建立空间直角坐标系.                       (1分)
,则
,     (3分)
因为,故
,                            (5分)
所以,平面.                              (6分)
(2)因为平面,所以可取平面的一个法向量
,                                               (1分)
的坐标为,则,(2分)
设平面

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知正四棱柱中,.
(1)求证:
(2)求二面角的余弦值;
(3)在线段上是否存在点,使得平面平面,若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)

如图,在三棱柱中,底面,E、F分别是棱的中点.
(1)求证:AB⊥平面AA1 C1C;
(2)若线段上的点满足平面//平面,试确定点的位置,并说明理由;
(3)证明:⊥A1C.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,底面为平行四边形,底面

(1)证明:
(2)若,求二面角余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在五面体ABCDEF中,四边形ABCD是矩形,DE⊥平面ABCD.

(1)求证:AB∥EF;
(2)求证:平面BCF⊥平面CDEF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图①,已知ABC是边长为l的等边三角形,D,E分别是AB,AC边上的点,AD=AE,F是BC的中点,AF与DE交于点G,将ABF沿AF折起,得到如图②所示的三棱锥A-BCF,其中BC=

(1)证明:DE//平面BCF;
(2)证明:CF平面ABF;
(3)当AD=时,求三棱锥F-DEG的体积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面是边长为1的正方形,,点E在棱PB上.

(1)求证:平面
(2)当且E为PB的中点时,求AE与平面PDB
所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,正方形ADEF与梯形ABCD所在的平面互相垂直,,,.

(1)求证:
(2)求直线与平面所成角的正切值;
(3)在上找一点,使得∥平面ADEF,请确定M点的位置,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四面体PABC中,PC⊥AB,PA⊥BC,点D,E,F,G分别是棱AP,AC,BC,PB的中点.

(1)求证:DE∥平面BCP.
(2)求证:四边形DEFG为矩形.
(3)是否存在点Q,到四面体PABC六条棱的中点的距离相等?说明理由.

查看答案和解析>>

同步练习册答案