如图所示,正方形ADEF与梯形ABCD所在的平面互相垂直,,∥,.
(1)求证:;
(2)求直线与平面所成角的正切值;
(3)在上找一点,使得∥平面ADEF,请确定M点的位置,并给出证明.
(1)见解析;(2).(3)M是EC中点,BM∥面ADEF.
解析试题分析:(1)由已知:面面,,得到,.
取四边形.
由,得到,
根据证得.
(2)由(1)可知:即为CE与面BDE所成的角.
在中,可得.
(3)取EC中点M,则BM∥面ADEF,证明思路如下:
连结MB、MP,由(1)知BP∥AD,得到BP∥面ADEF,在由三角形中位线定理,可得∥,进一步可得证.
试题解析:(1)由已知:面面,面面.
,,.
取.
设,
,,
从而. 4分
(2)由(1)可知:即为CE与面BDE所成的角.
中,,
. 8分
(3)取EC中点M,则BM∥面ADEF,证明如下:
连结MB、MP,由(1)知BP∥AD,∴BP∥面ADEF,M、P分别为EC、DC的中点,∥,∴MP∥面ADEF,∴面BMP∥面ADEF,∴BM∥面ADEF. 12分
考点:平行关系,垂直关系,线面角的计算.
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P-ABCD中,四边形ABCD是矩形,侧面PAD⊥底面ABCD,若点E,F分别是PC,BD的中点。
(1)求证:EF∥平面PAD;
(2)求证:平面PAD⊥平面PCD
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知四棱锥P-ABCD中,PB⊥平面ABCD,底面ABCD是直角梯形,∠ABC=∠BCD=90°,PB=BC=CD=AB.Q是PC上的一点.
⑴求证:平面PAD⊥面PBD;
⑵当Q在什么位置时,PA∥平面QBD?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,三棱柱的底面是边长为2的正三角形,且侧棱垂直于底面,侧棱长是,D是AC的中点。
(1)求证:平面;
(2)求二面角的大小;
(3)求直线与平面所成的角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四棱锥PABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F,G,M,N分别为PB,AB,BC,PD,PC的中点
(1)求证:CE∥平面PAD;
(2)求证:平面EFG⊥平面EMN.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,在正方体ABCDA1B1C1D1中,E、F、G、H分别是BC、CC1、C1D1、A1A的中点.求证:
(1)BF∥HD1;
(2)EG∥平面BB1D1D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com