精英家教网 > 高中数学 > 题目详情

已知四棱锥P-ABCD中,PB⊥平面ABCD,底面ABCD是直角梯形,∠ABC=∠BCD=90°,PB=BC=CD=AB.Q是PC上的一点.

⑴求证:平面PAD⊥面PBD;
⑵当Q在什么位置时,PA∥平面QBD?

⑴详见解析;⑵当时,PA∥平面QBD.

解析试题分析:(1)要证面面垂直,先证线面垂直,所以首先考虑证哪条线垂直哪个面.由于PB⊥平面ABCD,所以PB⊥AD.又在底面ABCD可证得AD⊥BD,这样可证得AD⊥平面PBD,进而得平面PAD⊥平面PBD;⑵要使得PA∥平面QBD,必须使得平面QBD内有一条直线与PA平行,为了找这条直线,先作过PA与平面QBD相交的平面,只要交线与PA平行即可.
试题解析:⑴∵∠ABC=∠BCD=90°,BC=CD=AB,
设BC=1,则AD=BD=,∴
又PB⊥平面ABCD.∴PB⊥AD
又因为BD,PB在平面PBD内,且BD与PB相交,
∴AD⊥平面PBD
又AD面PAD,
所以平面PAD⊥平面PBD。       6分
(2)当时,PA∥平面QBD,证明如下:
连结AC交BD于点M,
∵2CD=AB,CD∥AB,∴AM=2MC
过PA的平面PAC平面QBD=MQ,
∵PA∥平面QBD,∴AP∥MQ,∴PQ=2QC.       12分
考点:空间直线与平面的位置关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,四棱锥P -ABCD的底面是矩形,侧面PAD是正三角形,且侧面PAD⊥底面ABCD,E 为侧棱PD的中点。
(1)证明:PB//平面EAC;
(2)若AD="2AB=2," 求直线PB与平面ABCD所成角的正切值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在五面体ABCDEF中,四边形ABCD是矩形,DE⊥平面ABCD.

(1)求证:AB∥EF;
(2)求证:平面BCF⊥平面CDEF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面是边长为1的正方形,,点E在棱PB上.

(1)求证:平面
(2)当且E为PB的中点时,求AE与平面PDB
所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图在四棱锥中,底面是菱形,,平面平面的中点,是棱上一点,且.

(1)求证:平面
(2)证明:∥平面
(3)求二面角的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,正方形ADEF与梯形ABCD所在的平面互相垂直,,,.

(1)求证:
(2)求直线与平面所成角的正切值;
(3)在上找一点,使得∥平面ADEF,请确定M点的位置,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在棱长为2的正方体ABCD-A1B1C1D1中,E为棱CC1的中点。

(1)求证:BD⊥AE;
(2)求点A到平面BDE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在等腰直角三角形中, =900 ="6," 分别是上的点,  的中点.将沿折起,得到如图所示的四棱椎,其中

(1)证明:
(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,正方形ABCD和三角形ACE所在的平面互相垂直.EF∥BD,AB=EF.求证:

(1)BF∥平面ACE;
(2)BF⊥BD.

查看答案和解析>>

同步练习册答案