如图在四棱锥中,底面是菱形,,平面平面,,为的中点,是棱上一点,且.
(1)求证:平面;
(2)证明:∥平面;
(3)求二面角的度数.
(1)答案详见解析;(2)答案详见解析;(3)
解析试题分析:
(1)常用的证明直线和平面垂直的方法有两种:①证明直线和平面内的两条相交直线垂直;②若两个平面垂直,则一个平面内垂直于它们交线的直线垂直于另一个平面.本题易证,由平面平面,从而证明平面;(2)证明直线和平面平行的常用方法有两种:①证明直线和平面内的一条直线平行;②若两个平面平行,则一个平面内的直线平行于另一个平面.本题中,连接,交于,连接,易证,故,进而证明∥平面;(3)
选三条两两垂直的三条直线分别作为轴,建立空间直角坐标系,用坐标表示相关点,分别求两个半平面的法向量并求其夹角,然后观察二面角是锐二面角还是钝二面角,从而决定取正或负角.
试题解析:(1)由已知,为的中点,,又因为平面平面,且平面平面=,面,∴平面.
(2)连接,交于,连接,因为底面是菱形,∴,∴∽,,∴,,又,,∴,又平面,平面,∴∥平面.
(3)连结,底面是菱形,且,是等边三角形,由(1)平面..以为坐标原点,分别为轴轴轴建立空间直角坐标系
则. 10分
设平面
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,且底面ABCD,,E是PA的中点.
(1)求证:平面平面EBD;
(2)若PA=AB=2,求三棱锥P-EBD的高.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知四棱锥P-ABCD中,PB⊥平面ABCD,底面ABCD是直角梯形,∠ABC=∠BCD=90°,PB=BC=CD=AB.Q是PC上的一点.
⑴求证:平面PAD⊥面PBD;
⑵当Q在什么位置时,PA∥平面QBD?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在斜三棱柱中,侧面⊥底面,侧棱与底面成60°的角,.底面是边长为2的正三角形,其重心为点,是线段上一点,且.
(1)求证://侧面;
(2)求平面与底面所成锐二面角的余弦值;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知如图①所示,矩形纸片AA′A1′A1,点B、C、B1、C1分别为AA′、A1A1′的三等分点,将矩形纸片沿BB1、CC1折成如图②形状(正三棱柱),若面对角线AB1⊥BC1,求证:A1C⊥AB1.
(图①)
(图②)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com