精英家教网 > 高中数学 > 题目详情

如图在四棱锥中,底面是菱形,,平面平面的中点,是棱上一点,且.

(1)求证:平面
(2)证明:∥平面
(3)求二面角的度数.

(1)答案详见解析;(2)答案详见解析;(3)

解析试题分析:

(1)常用的证明直线和平面垂直的方法有两种:①证明直线和平面内的两条相交直线垂直;②若两个平面垂直,则一个平面内垂直于它们交线的直线垂直于另一个平面.本题易证,由平面平面,从而证明平面;(2)证明直线和平面平行的常用方法有两种:①证明直线和平面内的一条直线平行;②若两个平面平行,则一个平面内的直线平行于另一个平面.本题中,连接,交,连接,易证,故,进而证明∥平面;(3)
选三条两两垂直的三条直线分别作为轴,建立空间直角坐标系,用坐标表示相关点,分别求两个半平面的法向量并求其夹角,然后观察二面角是锐二面角还是钝二面角,从而决定取正或负角.
试题解析:(1)由已知的中点,,又因为平面平面,且平面平面=,∴平面
(2)连接,交,连接,因为底面是菱形,∴,∴,∴,,又,∴,又平面平面,∴∥平面
(3)连结底面是菱形,且是等边三角形,由(1)平面..以为坐标原点,分别为轴建立空间直角坐标系
.    10分
设平面

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在三棱柱中,侧棱底面,的中点,,.

(1)求证:平面
(2)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图:在四棱锥中,底面是正方形,,点上,且.

(1)求证:平面;   
(2)求二面角的余弦值;
(3)证明:在线段上存在点,使∥平面,并求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在五面体中,四边形是边长为的正方形,平面.

(1)求证:平面
(2)求直线与平面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,且底面ABCD,,E是PA的中点.

(1)求证:平面平面EBD;
(2)若PA=AB=2,求三棱锥P-EBD的高.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知四棱锥P-ABCD中,PB⊥平面ABCD,底面ABCD是直角梯形,∠ABC=∠BCD=90°,PB=BC=CD=AB.Q是PC上的一点.

⑴求证:平面PAD⊥面PBD;
⑵当Q在什么位置时,PA∥平面QBD?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在斜三棱柱中,侧面⊥底面,侧棱与底面成60°的角,.底面是边长为2的正三角形,其重心为点,是线段上一点,且.
 
(1)求证://侧面;
(2)求平面与底面所成锐二面角的余弦值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱中,侧面为菱形, 且的中点.

(1)求证:平面平面
(2)求证:∥平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知如图①所示,矩形纸片AA′A1′A1,点B、C、B1、C1分别为AA′、A1A1′的三等分点,将矩形纸片沿BB1、CC1折成如图②形状(正三棱柱),若面对角线AB1⊥BC1,求证:A1C⊥AB1.

(图①)

(图②)

查看答案和解析>>

同步练习册答案