精英家教网 > 高中数学 > 题目详情

如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,且底面ABCD,,E是PA的中点.

(1)求证:平面平面EBD;
(2)若PA=AB=2,求三棱锥P-EBD的高.

(1)证明过程详见解析;(2).

解析试题分析:本题主要以四棱锥为几何背景考查线面垂直、面面垂直、等体积法等基础知识,考查空间想象能力、逻辑推理能力、计算能力.第一问,利用线面垂直的性质得PA⊥BD,又因为BD⊥PC,利用线面垂直的判定得到BD⊥平面PAC,最后利用面面垂直的判定得到平面PAC⊥平面EBD;第二问,由于BD⊥平面PAC,所以BDAC,所以ABCD是菱形,可求出的面积,由于BD⊥平面PAC,所以BDOE,所以可求出的面积,用等体积法求出三棱锥P-EBD的体积,通过列出的等式解出高的值.
试题解析:(1)因为PA⊥平面ABCD,所以PABD
BDPC,所以BD⊥平面PAC
因为BDÌ平面EBD,所以平面PAC⊥平面EBD.     5分

(2)由(1)可知,BDAC,所以ABCD是菱形,∠BAD=120°.
所以.         7分
ACBDO,连结OE,则(1)可知,BDOE
所以.          9分
设三棱锥P-EBD的高为h,则
,即,解得. 12分
考点:线面垂直、面面垂直、等体积法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,平面ABCD,AD//BC,AC,,点M在线段PD上.

(1)求证:平面PAC;
(2)若二面角M-AC-D的大小为,试确定点M的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱柱是直棱柱,.点分别为的中点.

(1)求证:平面;
(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,正方体中,已知为棱上的动点.

(1)求证:
(2)当为棱的中点时,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱中,,顶点在底面上的射影恰为点
(1)证明:平面平面
(2 )若点的中点,求出二面角的余弦值.

(1)证明:平面平面
(2)若点的中点,求出二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图在四棱锥中,底面是菱形,,平面平面的中点,是棱上一点,且.

(1)求证:平面
(2)证明:∥平面
(3)求二面角的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平面内,,P为平面外一个动点,且PC=

(1)问当PA的长为多少时,
(2)当的面积取得最大值时,求直线BC与平面PAB所成角的大小

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知四棱锥P-ABCD,底面ABCD是,边长为的菱形,又,且PD=CD,点M、N分别是棱AD、PC的中点.

(1)证明:DN//平面PMB;
(2)证明:平面PMB平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC,G、H分别为DC、BC的中点.

(1)求证:平面FGH∥平面BDE;
(2)求证:平面ACF⊥平面BDE.

查看答案和解析>>

同步练习册答案