精英家教网 > 高中数学 > 题目详情

已知如图①所示,矩形纸片AA′A1′A1,点B、C、B1、C1分别为AA′、A1A1′的三等分点,将矩形纸片沿BB1、CC1折成如图②形状(正三棱柱),若面对角线AB1⊥BC1,求证:A1C⊥AB1.

(图①)

(图②)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图在四棱锥中,底面是菱形,,平面平面的中点,是棱上一点,且.

(1)求证:平面
(2)证明:∥平面
(3)求二面角的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,几何体EABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.

(1)求证:BE=DE;
(2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥SABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,过A作AF⊥SB,垂足为F,点E、G分别是棱SA、

SC的中点.求证:
(1)平面EFG∥平面ABC;
(2)BC⊥SA.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC,G、H分别为DC、BC的中点.

(1)求证:平面FGH∥平面BDE;
(2)求证:平面ACF⊥平面BDE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,正方形ABCD和三角形ACE所在的平面互相垂直.EF∥BD,AB=EF.求证:

(1)BF∥平面ACE;
(2)BF⊥BD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

由平面α外一点P引平面的三条相等的斜线段,斜足分别为A、B、C,O为△ABC的外心,求证:OP⊥α.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知四棱锥PABCD中,底面ABCD为正方形,PD⊥平面ABCDECPD,且PD=2EC.

(1)求证:BE∥平面PDA
(2)若N为线段PB的中点,求证:NE⊥平面PDB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,正方形ABCD和三角形ACE所在的平面互相垂直,EFBDABEF.

(1)求证:BF∥平面ACE
(2)求证:BFBD.

查看答案和解析>>

同步练习册答案