精英家教网 > 高中数学 > 题目详情

如图,正方形ABCD和三角形ACE所在的平面互相垂直,EFBDABEF.

(1)求证:BF∥平面ACE
(2)求证:BFBD.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知如图①所示,矩形纸片AA′A1′A1,点B、C、B1、C1分别为AA′、A1A1′的三等分点,将矩形纸片沿BB1、CC1折成如图②形状(正三棱柱),若面对角线AB1⊥BC1,求证:A1C⊥AB1.

(图①)

(图②)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在正方体ABCD-A1B1C1D1中,E,F,G,M,N分别是B1C1,A1D1,A1B1,BD,B1C的中点,

求证:(1)MN∥平面CDD1C1.
(2)平面EBD∥平面FGA.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形ABCD是矩形,平面ABCD⊥平面BCE,BE⊥EC.

(1)求证:平面AEC⊥平面ABE;
(2)点F在BE上.若DE∥平面ACF,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱柱ABC-A1B1C1的侧棱AA1⊥平面ABC,△ABC为正三角形,侧面AA1C1C是正方形, E是的中点,F是棱CC1上的点.

(1)当时,求正方形AA1C1C的边长;
(2)当A1F+FB最小时,求证:AE⊥平面A1FB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在三棱柱ABC ­A1B1C1中,AA1⊥BC,∠A1AC=60°,AA1=AC=BC=1,A1B=.

(1)求证:平面A1BC⊥平面ACC1A1
(2)如果D为AB的中点,求证:BC1∥平面A1CD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知在四棱锥PABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCDEF分别是线段ABBC的中点.

(1)证明:PFFD
(2)判断并说明PA上是否存在点G,使得EG∥平面PFD
(3)若PB与平面ABCD所成的角为45°,求二面角APDF的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知正方体棱长为2,分别是的中点.

(1)证明:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,边长为2的菱形中,,点分别是的中点,将分别沿折起,使两点重合于点.
                                          (1)求证:
(2)求二面角的余弦值.

查看答案和解析>>

同步练习册答案