精英家教网 > 高中数学 > 题目详情

如图,已知正方体棱长为2,分别是的中点.

(1)证明:
(2)求二面角的余弦值.

(1)证明详见解析;(2).

解析试题分析:先以点为原点建立空间直角坐标系,然后标明有效点的坐标,(1)写出有效向量的坐标,利用向量的数量积为零即可证明,从而可得平面;(2)易知为平面的法向量,先计算,然后观察二面角是锐角还是钝角,最终确定二面角的余弦值.
试题解析:以为原点建立如图空间直角坐标系,正方体棱长为2

  2分
(1)则
          3分

          4分

          5分
      6分
                      7分
(2)由(1)知为面的法向量          8分
为面的法向量      9分
夹角为,则   12分
由图可知二面角的平面角为
∴二面角的余弦值为              14分.
考点:1.空间向量在解决空间垂直上的应用;2.空间向量在解决空间角中的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知四棱锥PABCD中,底面ABCD为正方形,PD⊥平面ABCDECPD,且PD=2EC.

(1)求证:BE∥平面PDA
(2)若N为线段PB的中点,求证:NE⊥平面PDB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,正方形ABCD和三角形ACE所在的平面互相垂直,EFBDABEF.

(1)求证:BF∥平面ACE
(2)求证:BFBD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,AB是圆O的直径,PA垂直圆O所在的平面,C是圆O上的点.

(1)求证:BC⊥平面PAC
(2)设QPA的中点,G为△AOC的重心,求证:QG∥平面PBC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P ABCD中,侧面PAD⊥底面ABCD,侧棱,,底面为直角梯形,其中BC∥AD, AB⊥AD, ,O为AD中点.

(1)求直线与平面所成角的余弦值;
(2)求点到平面的距离;
(3)线段上是否存在一点,使得二面角的余弦值为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

四边形都是边长为的正方形,点E是的中点,平面

(1)求证:平面
(2)求证:平面平面
(3)求三棱锥A—BDE的体积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在矩形中,点为边上的点,点为边的中点,,现将沿边折至位置,且平面平面.

(1) 求证:平面平面
(2) 求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,平面的中点.

(1)求证:平面
(2)求证:平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,点分别是棱的中点.

(1)求证://平面
(2)若平面平面,求证:

查看答案和解析>>

同步练习册答案