如图,在三棱锥中,点分别是棱的中点.
(1)求证://平面;
(2)若平面平面,,求证:.
(1)详见解析;(2)详见解析.
解析试题分析:(1)这是一个证明直线和平面平行的问题,考虑直线与平面平行的判定定理,可找面外线平行于面内线,本题容易找到,结论自然得证;(2)因为条件中有平面与平面垂直,故可考虑平面与平面垂直的判定定理,在一平面内作垂直于交线的直线平行于另一平面,再得到线线垂直,再证线面垂直,再得线线垂直,问题不难解决.
试题解析:(1)在中,、分别是、的中点,所以,
又平面,平面,所以平面. 6分
(2)在平面内过点作,垂足为.因为平面平面,平面平面,平面,所以平面, 8分
又平面,所以, 10分
又,,平面,平面,
所以平面, 12分
又平面,所以. 14分
考点:直线与平面平行的判定、直线与平面垂直的判定,平面与平面垂直的性质.
科目:高中数学 来源: 题型:解答题
等边三角形的边长为3,点、分别是边、上的点,且满足(如图1).将△沿折起到△的位置,使二面角为直二面角,连结、 (如图2).
(Ⅰ)求证:平面;
(Ⅱ)在线段上是否存在点,使直线与平面所成的角为?若存在,求出的长,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,,,DC=1,AB=2,PA⊥平面ABCD,PA=1.
(1)求证:AB∥平面PCD;
(2)求证:BC⊥平面PAC;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四棱锥S-ABCD中,SD底面ABCD,AB//DC,ADDC,AB=AD=1,DC=SD=2,E为棱SB上任一点.
(Ⅰ)求证:无论E点取在何处恒有;
(Ⅱ)设,当平面EDC平面SBC时,求的值;
(Ⅲ)在(Ⅱ)的条件下求二面角的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com