精英家教网 > 高中数学 > 题目详情

等边三角形的边长为3,点分别是边上的点,且满足(如图1).将△沿折起到△的位置,使二面角为直二面角,连结 (如图2).

(Ⅰ)求证:平面;
(Ⅱ)在线段上是否存在点,使直线与平面所成的角为?若存在,求出的长,若不存在,请说明理由.

(Ⅱ)在线段上存在点,使直线与平面所成的角为,此时

解析试题分析:(Ⅰ)二面角为直二面角,要证平面;只要证
(Ⅱ)假设存在点,使直线与平面所成的角为,根据直线与平面所成的角的定义作出
直线与平面所成的角,设的长为,用表示,在直角中,
根据勾股定理列出方程,若方程有解则存在,否则不存在.或借助已有的垂直关系;也可以为坐标原点建立空间直角标系,求出平面的一个法向量 ,利用建立方程,解这个方程探求 点的存在性.
试题解析:证明:(1)因为等边△的边长为3,且,
所以,. 在△中,,
由余弦定理得
. 因为,
所以.          3分
折叠后有,因为二面角是直二面角,
所以平面平面  ,又平面平面,
平面,, 所以平面.    6分

(2)解法1:假设在线段上存在点,使直线与平面所成的角为.
如图,作于点,连结 ,
由(1)有平面,而平面,
所以,又, 所以平面,  
所以是直线与平面所成的角  ,          8分
,则

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,AB是圆O的直径,PA垂直圆O所在的平面,C是圆O上的点.

(1)求证:BC⊥平面PAC
(2)设QPA的中点,G为△AOC的重心,求证:QG∥平面PBC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,平面的中点.

(1)求证:平面
(2)求证:平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,是正方形,平面分别是的中点.

(1)在线段上确定一点,使平面,并给出证明;
(2)证明平面平面,并求出到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

直三棱柱中,,D为BC中点.

(Ⅰ)求证:;
(Ⅱ)求证:;
(Ⅲ)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,四边形ABCD是矩形,平面PCD⊥平面ABCD,M为PC中点.求证:

(1)PA∥平面MDB;
(2)PD⊥BC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,点分别是棱的中点.

(1)求证://平面
(2)若平面平面,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知为不在同一直线上的三点,且.

(1)求证:平面//平面
(2)若平面,且,求证:平面
(3)在(2)的条件下,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE=x,G是BC的中点。沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图) .

(1) 当x=2时,求证:BD⊥EG ;
(2) 若以F、B、C、D为顶点的三棱锥的体积记为f(x),求f(x)的最大值;
(3) 当f(x)取得最大值时,求二面角D-BF-C的余弦值.

查看答案和解析>>

同步练习册答案