精英家教网 > 高中数学 > 题目详情

如图,在四棱锥中,是正方形,平面分别是的中点.

(1)在线段上确定一点,使平面,并给出证明;
(2)证明平面平面,并求出到平面的距离.

(1)为线段中点时,平面;(2)的距离为.

解析试题分析:

(1)为线段中点,连接,可得出,所以为平面四边形,先证平面,所以,又三角形为等腰直角三角形,为斜边中点,所以.即可得结论平面
(2)根据线线垂直可得线面垂直
进而推出面面垂直.
取所以中点所以,证明即为,因为 ,在平面内,作,垂足为,则, 即为的距离,在三角形中,中点,,即的距离为   (12分)
试题解析:(1) 为线段中点时,平面.
中点,连接
由于,所以为平面四边形,
平面,得
,所以平面
所以
又三角形为等腰直角三角形,为斜边中点,所以
,所以平面.   (5分)
(2)因为所以.
,所以,所以.
取所以中点所以,连接所以,则,即为
在平面内,作,垂足为,则,
即为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在三棱柱ABC ­A1B1C1中,AA1⊥BC,∠A1AC=60°,AA1=AC=BC=1,A1B=.

(1)求证:平面A1BC⊥平面ACC1A1
(2)如果D为AB的中点,求证:BC1∥平面A1CD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,底面为平行四边形,⊥底面

(1)证明:平面平面
(2)若二面角,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知在四棱锥中, 底面四边形是直角梯形, ,,.

(1)求证:
(2)求直线与底面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,边长为2的菱形中,,点分别是的中点,将分别沿折起,使两点重合于点.
                                          (1)求证:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形PDCE为矩形,ABCD为梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=.

(Ⅰ)若M为PA中点,求证:AC∥平面MDE;
(Ⅱ)求平面PAD与PBC所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

等边三角形的边长为3,点分别是边上的点,且满足(如图1).将△沿折起到△的位置,使二面角为直二面角,连结 (如图2).

(Ⅰ)求证:平面;
(Ⅱ)在线段上是否存在点,使直线与平面所成的角为?若存在,求出的长,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱中,平面分别是的中点.

(Ⅰ)求证:∥平面
(Ⅱ)求证:平面平面
(Ⅲ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱锥P—ABC中,PC⊥平面ABC,PC=AC=2,AB=BC, D是PB上一点,且CD⊥平面PAB.

(1)求证:AB⊥平面PCB;
(2)求异面直线AP与BC所成角的大小;

查看答案和解析>>

同步练习册答案