如图,在四棱锥中,是正方形,平面,,分别是的中点.
(1)在线段上确定一点,使平面,并给出证明;
(2)证明平面平面,并求出到平面的距离.
(1)为线段中点时,平面;(2)到的距离为.
解析试题分析:
(1)为线段中点,连接,可得出,所以为平面四边形,先证平面,所以,又三角形为等腰直角三角形,为斜边中点,所以.即可得结论平面;
(2)根据线线垂直可得线面垂直,
进而推出面面垂直.
取所以中点所以,证明即为,因为 ,在平面内,作,垂足为,则, 即为到的距离,在三角形中,为中点,,即到的距离为 (12分)
试题解析:(1) 为线段中点时,平面.
取中点,连接,
由于,所以为平面四边形,
由平面,得,
又,,所以平面,
所以,
又三角形为等腰直角三角形,为斜边中点,所以,
,所以平面. (5分)
(2)因为所以.
又,所以,所以.
取所以中点所以,连接所以,则,即为,
在平面内,作,垂足为,则,
即为
科目:高中数学 来源: 题型:解答题
在三棱柱ABC A1B1C1中,AA1⊥BC,∠A1AC=60°,AA1=AC=BC=1,A1B=.
(1)求证:平面A1BC⊥平面ACC1A1;
(2)如果D为AB的中点,求证:BC1∥平面A1CD.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四边形PDCE为矩形,ABCD为梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=.
(Ⅰ)若M为PA中点,求证:AC∥平面MDE;
(Ⅱ)求平面PAD与PBC所成锐二面角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
等边三角形的边长为3,点、分别是边、上的点,且满足(如图1).将△沿折起到△的位置,使二面角为直二面角,连结、 (如图2).
(Ⅰ)求证:平面;
(Ⅱ)在线段上是否存在点,使直线与平面所成的角为?若存在,求出的长,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,三棱锥P—ABC中,PC⊥平面ABC,PC=AC=2,AB=BC, D是PB上一点,且CD⊥平面PAB.
(1)求证:AB⊥平面PCB;
(2)求异面直线AP与BC所成角的大小;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com