精英家教网 > 高中数学 > 题目详情

如图,三棱锥P—ABC中,PC⊥平面ABC,PC=AC=2,AB=BC, D是PB上一点,且CD⊥平面PAB.

(1)求证:AB⊥平面PCB;
(2)求异面直线AP与BC所成角的大小;

(1)见解析;(2)

解析试题分析:(1)主要考虑证明AB垂直于平面PCB内的两条相交直线.根据PC⊥平面ABC,AB平面ABC,得到PC⊥AB.根据CD⊥平面PAB,AB平面PAB,得到OC⊥AB.因此AB平面PCB.
(2)有两种思路,
一是“几何法”,通过“一作,二证,三计算”确定异面直线PA与BC所成的角为.
二是“向量法”,以B为原点,建立如图所示的坐标系.通过确定向量的坐标
利用
得到异面直线AP与BC所成的角为 
试题解析:解法一:(1)∵PC⊥平面ABC,AB平面ABC,∴PC⊥AB.      2分
∵CD⊥平面PAB,AB平面PAB,∴OC⊥AB.   3分
又PCCD=C,∴AB平面PCB.     4分

(2)过点A作AF//BC,且AF=BC,连接PF,CF.
则∠PAF为异面直线PA与BC所成的角.      5分
由(1)可得AB⊥BC,∴CF⊥AF.
由三垂线定理,得PF⊥AF。
则AF=CF=
在Rt△PFA中,          
∴异面直线PA与BC所成的角为.      12分
解法二:(1)同解法一.
(2)由(1)AB⊥平面PCB,∵PC=AC=2,
又∵AB=BC,可求得BC=
以B为原点,建立如图所示的坐标系.
则A(0,,0),B(0,0,0),C(,0,0),P(,0,2).
     8分


∴异面直线AP与BC所成的角为     12分
考点:直线与平面的垂直关系,异面直线所成的角,空间向量的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,是正方形,平面分别是的中点.

(1)在线段上确定一点,使平面,并给出证明;
(2)证明平面平面,并求出到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知为不在同一直线上的三点,且.

(1)求证:平面//平面
(2)若平面,且,求证:平面
(3)在(2)的条件下,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

直四棱柱中,底面为菱形,且延长线上的一点,.设.

(Ⅰ)求二面角的大小;
(Ⅱ)在上是否存在一点,使?若存在,求的值;不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.

(1)求证:∥平面
(2)求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,侧面是边长为2的正三角形,且与底面垂直,底面的菱形,的中点.

(Ⅰ)求与底面所成角的大小;
(Ⅱ)求证:平面;(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE=x,G是BC的中点。沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图) .

(1) 当x=2时,求证:BD⊥EG ;
(2) 若以F、B、C、D为顶点的三棱锥的体积记为f(x),求f(x)的最大值;
(3) 当f(x)取得最大值时,求二面角D-BF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知平面是正三角形,AD=DEAB,且F是CD的中点.

⑴求证:AF//平面BCE;
⑵求证:平面BCE⊥平面CDE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱中,侧面均为正方形,∠,点是棱的中点.

(Ⅰ)求证:⊥平面
(Ⅱ)求证:平面
(Ⅲ)求二面角的余弦值.

查看答案和解析>>

同步练习册答案