如图,在三棱柱
中,侧面
,
均为正方形,∠
,点
是棱
的中点.![]()
(Ⅰ)求证:
⊥平面
;
(Ⅱ)求证:
平面
;
(Ⅲ)求二面角
的余弦值.
(Ⅰ)详见解析;(Ⅱ)详见解析;(Ⅲ)
.
解析试题分析:(Ⅰ)由侧面
,
均为正方形可证明三棱柱
是直三棱柱. 又点
是棱
的中点可证明
.从而通过线面垂直的判定定理可证
⊥平面
;(Ⅱ)连结
,交
于点
,连结
,通过三角形中位线的知识证明线线平行,从而由线面平行的判定定理得到
平面
;(Ⅲ)根据题中相关垂直条件构建空间直角坐标系.再找平面
的法向量及平面
的法向量
,计算法向量的夹角,通过比较得到二面角
的平面角,从而得到所求.
试题解析:(Ⅰ)证明:因为侧面
,
均为正方形,
所以
,
所以
平面
,三棱柱
是直三棱柱. 1分
因为
平面
,所以
, 2分
又因为
,
为
中点,
所以
. 3分
因为
,
所以
平面
. 4分
(Ⅱ)证明:连结
,交
于点
,连结
,
因为
为正方形,所以
为
中点,
又
为
中点,所以
为
中位线,
所以![]()
, 6分
因为
平面
,
平面
,
所以
平面
. 8分![]()
(Ⅲ)解: 因为侧面
,
均为正方形,
,
所以
两两互相垂直,如图所示建立直角坐标系
.
设
,则
.
, 9分
设平面
的法向量为
,则有![]()
取
,得
. 10分
又因为
平面
,所以平面
科目:高中数学 来源: 题型:解答题
如图,三棱锥P—ABC中,PC⊥平面ABC,PC=AC=2,AB=BC, D是PB上一点,且CD⊥平面PAB.![]()
(1)求证:AB⊥平面PCB;
(2)求异面直线AP与BC所成角的大小;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在直四棱柱ABCD-A1B1C1D1中,DB=BC,DB⊥AC,点M是棱BB1上一点.![]()
(1)求证:B1D1∥平面A1BD;
(2)求证:MD⊥AC;
(3)试确定点M的位置,使得平面DMC1⊥平面CC1D1D.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=1.![]()
(1)求异面直线B1C1与AC所成角的大小;
(2)若该直三棱柱ABC-A1B1C1的体积为
,求点A到平面A1BC的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.![]()
(1)证明:B1C1⊥CE;
(2)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为
.求线段AM的长.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.![]()
(1) 证明:BD⊥平面PAC;
(2) 若AD=2,当PC与平面ABCD所成角的正切值为
时,求四棱锥P-ABCD的外接球表面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com