在直四棱柱ABCD-A1B1C1D1中,DB=BC,DB⊥AC,点M是棱BB1上一点.
(1)求证:B1D1∥平面A1BD;
(2)求证:MD⊥AC;
(3)试确定点M的位置,使得平面DMC1⊥平面CC1D1D.
(1)见解析. (2)见解析.(3)当点M为棱BB1的中点时,平面DMC1⊥平面CC1D1D.
解析试题分析:(1)由直四棱柱概念,得BB1//DD1,
得到四边形BB1D1D是平行四边形,从而B1D1∥BD,由直线与平面平行的判定定理即得证.
(2)注意到BB1⊥平面ABCD,AC?平面ABCD,推出BB1⊥AC.
又BD⊥AC,即得AC⊥平面BB1D1D.而MD?平面BB1D1D,故得证.
(3)分析预见当点M为棱BB1的中点时,符合题意.此时取DC的中点N,D1C1的中点N1,连接NN1交DC1于O,连接OM,证得BN⊥DC.又DC是平面ABCD与平面DCC1D1的交线,而平面ABCD⊥平面DCC1D1,推出BN⊥平面DCC1D1.又可证得,O是NN1的中点,由四边形BMON是平行四边形,得出OM⊥平面CC1D1D,得证.
试题解析:(1)由直四棱柱概念,得BB1//DD1,
∴四边形BB1D1D是平行四边形,∴B1D1∥BD.
而BD?平面A1BD,B1D1?平面A1BD,∴B1D1∥平面A1BD.
(2)∵BB1⊥平面ABCD,AC?平面ABCD,∴BB1⊥AC.
又∵BD⊥AC,且BD∩BB1=B,∴AC⊥平面BB1D1D.
而MD?平面BB1D1D,∴MD⊥AC.
(3)当点M为棱BB1的中点时,取DC的中点N,D1C1的中点N1,连接NN1交DC1于O,连接OM,如图所示.
∵N是DC的中点,BD=BC,∴BN⊥DC.又∵DC是平面ABCD与平面DCC1D1的交线,而平面ABCD⊥平面DCC1D1,∴BN⊥平面DCC1D1.
又可证得,O是NN1的中点,∴BM∥ON且BM=ON,即四边形BMON是平行四边形,∴BN∥OM,∴OM⊥平面CC1D1D,因为OM?面DMC1,所以平面DMC1⊥平面CC1D1D.
考点:线面平行的判定定理,线面垂直的判定及性质,面面垂直的判定,四棱柱的几何特征.
科目:高中数学 来源: 题型:解答题
如图,已知、、为不在同一直线上的三点,且,.
(1)求证:平面//平面;
(2)若平面,且,,,求证:平面;
(3)在(2)的条件下,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE=x,G是BC的中点。沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图) .
(1) 当x=2时,求证:BD⊥EG ;
(2) 若以F、B、C、D为顶点的三棱锥的体积记为f(x),求f(x)的最大值;
(3) 当f(x)取得最大值时,求二面角D-BF-C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P-ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=,PA=,∠ABC=120°,G为线段PC的中点.
(1)证明:PA//平面BGD;
(2)求直线DG与平面PAC所成的角的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
将边长为的正方形和等腰直角三角形按图拼为新的几何图形,中,,连结,若,为中点
(Ⅰ)求与所成角的大小;
(Ⅱ)若为中点,证明:平面;
(Ⅲ)证明:平面平面
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com