如图,在四棱锥P-ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=,PA=,∠ABC=120°,G为线段PC的中点.
(1)证明:PA//平面BGD;
(2)求直线DG与平面PAC所成的角的正切值.
(1)见解析(2)
解析试题分析:(1) 求证线面平行就要找够平行条件,平面外直线,差平面内直线,在四棱锥中找过的平面与平面相交,再证明交线与平行;
(2)由三角形的中位线性质以及条件证明∠DGO为DG与平面PAC所成的角,求出GO和AC的值,可得OC、OD的值,再利用直角三角形中的边角关系求得tan∠DGO的值.
试题解析:
(1)证明:设点O为AC、BD的交点,由AB=BC,AD=CD,得BD是线段AC的中垂线,所以O为AC的中点, 连结OG又因为G为PC的中点,所以 (3分)
又因为所以PA//面BGD (6分)
(2)
,又由(1)知
,所以与面所成的角是.(8分)
由 (1)知:,
,所以
在直角中,
在直角中, ,
所以直线与面所成的角的正切值是. (12分)
考点:直线与平面平行的判定;直线与平面所成的角.
科目:高中数学 来源: 题型:解答题
如图,已知平行六面体ABCD—A1B1C1D1的底面为正方形,O1、O分别为上、下底面的中心,且A1在底面ABCD上的射影是O。
(Ⅰ)求证:平面O1DC⊥平面ABCD;
(Ⅱ)若∠A1AB=60°,求平面BAA1与平面CAA1的夹角的余弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在直三棱柱中,,是棱上的一点,是的延长线与的延长线的交点,且∥平面。
(1)求证:;
(2)求二面角的平面角的余弦值;
(3)求点到平面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四棱柱的底面是平行四边形,且底面,,,°,点为中点,点为中点.
(Ⅰ)求证:平面平面;
(Ⅱ)设二面角的大小为,直线与平面所成的角为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在直四棱柱ABCD-A1B1C1D1中,DB=BC,DB⊥AC,点M是棱BB1上一点.
(1)求证:B1D1∥平面A1BD;
(2)求证:MD⊥AC;
(3)试确定点M的位置,使得平面DMC1⊥平面CC1D1D.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知在直三棱柱ABC-A1B1C1中,AB=4,AC=BC=3,D为AB的中点.
(Ⅰ)求异面直线CC1和AB的距离;
(Ⅱ)若AB1⊥A1C,求二面角A1-CD-B1的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=1.
(1)求异面直线B1C1与AC所成角的大小;
(2)若该直三棱柱ABC-A1B1C1的体积为,求点A到平面A1BC的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(如图1)在平面四边形中,为中点,,,且,现沿折起使,得到立体图形(如图2),又B为平面ADC内一点,并且ABCD为正方形,设F,G,H分别为PB,EB,PC的中点.
(1)求三棱锥的体积;
(2)在线段PC上是否存在一点M,使直线与直线所成角为?若存在,求出线段的长;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com