精英家教网 > 高中数学 > 题目详情

如图,已知平行六面体ABCD—A1B1C1D1的底面为正方形,O1、O分别为上、下底面的中心,且A1在底面ABCD上的射影是O。

(Ⅰ)求证:平面O1DC⊥平面ABCD;
(Ⅱ)若∠A1AB=60°,求平面BAA1与平面CAA1的夹角的余弦值。

(Ⅰ)详见解析;(Ⅱ)平面与平面的夹角的余弦值为

解析试题分析:(Ⅰ)求证平面平面,证明面面垂直,先证线面垂直,即证一个平面过另一个平面的垂线,注意到在底面上的射影是,即平面,由图像可知只需证明即可,因此可连,则的交点,易知四边形为平行四边形,从而得,这样就得平面,由面面垂直的判定定理可得结论;(Ⅱ)平面与平面的夹角的余弦值,可用传统方法,找二面角的平面角,过点,垂足为,连接,由三垂线定理得,∴为二面角的平面角,在中求出此角即可;也可用空间向量法,如图分别以轴建立空间直角坐标系,分别找出两个半平面的法向量,利用法向量来求平面与平面的夹角的余弦值.
试题解析:(Ⅰ)连结AC,BD, A1C1,则O为AC,BD的交点O1为A1C1,B1D1的交点。
由平行六面体的性质知:A1O1∥OC且A1O1=OC,四边形A1OCO1为平行四边形,      (2分)
A1O∥O1C. 又∵A1O⊥平面ABCD,O1C⊥平面ABCD,             (4分)
又∵O1C平面O1DC, 平面O1DC⊥平面ABCD。       (6分)

(Ⅱ)由题意可知RtA1OB≌RtA1OA,则A1A=A1B,
又∠A1AB=600,故A1AB是等边三角形。                  (7分)
不妨设AB="a," 则在RtA1OA中,OA=a, AA1="a," OA1=a,
如图分别以OB,OC,OA1为x轴,y轴,z轴建立空间直角坐标系,
则可得坐标为A(0,-a,0), B(a,0,0), A1(0,0,,a)         (8分)
=(a,a,0),  =(-a,0,a)
设平面ABA1的法向量为=(x,y,z)
则由·=0得x+y=0,由·=0得x-z=0
令x=1得=(1,-1,1)                                      (10分)
又知BD⊥平面ACC1A1,故可得平面CAA1的一个法向量为=(1,0,0)
cosθ=||=
从而平

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在三棱锥S—ABC中,SC⊥平面ABC,点P、M分别是SC和SB的中点,设PM=AC=1,∠ACB=90°,直线AM与直线SC所成的角为60°。

(1)求证:平面MAP⊥平面SAC。
(2)求二面角M—AC—B的平面角的正切值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,四边形ABCD是矩形,平面PCD⊥平面ABCD,M为PC中点.求证:

(1)PA∥平面MDB;
(2)PD⊥BC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知是圆的直径,垂直圆所在的平面,是圆上任一点,是线段的中点,是线段上的一点.

求证:(Ⅰ)若为线段中点,则∥平面
(Ⅱ)无论何处,都有.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知为不在同一直线上的三点,且.

(1)求证:平面//平面
(2)若平面,且,求证:平面
(3)在(2)的条件下,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面是正方形,⊥平面

(1)求证:
(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

直四棱柱中,底面为菱形,且延长线上的一点,.设.

(Ⅰ)求二面角的大小;
(Ⅱ)在上是否存在一点,使?若存在,求的值;不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,侧面是边长为2的正三角形,且与底面垂直,底面的菱形,的中点.

(Ⅰ)求与底面所成角的大小;
(Ⅱ)求证:平面;(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=,PA=,∠ABC=120°,G为线段PC的中点.

(1)证明:PA//平面BGD;
(2)求直线DG与平面PAC所成的角的正切值.

查看答案和解析>>

同步练习册答案