精英家教网 > 高中数学 > 题目详情

如图,棱柱的侧面是菱形,

(Ⅰ)证明:平面平面
(Ⅱ)设上的点,且平面,求的值.

(Ⅰ)详见解析;(Ⅱ)

解析试题分析:(Ⅰ)由题中侧面是菱形,可见它的对角线相互垂直,即,再加上所给的条件,这样就出现了一条直线同时与两条直线垂直,而这两条直线确定了要证的两个平面中一个平面,即平面,根据直线与平面垂直的判定定理可证得平面,最后由平面与平面垂直的判定定理,可以得证; (Ⅱ)由(Ⅱ)中的条件平面,由直线与平面平行的性质定理,可构造出一个过的平面,即为图中的平面 ,然后在中,由菱形 为一边中点,再结合三角形中位线不难得出 为的中点,这样得到 

试题解析:解:(Ⅰ)因为侧面是菱形,所以
又已知
所又平面,又平面
所以平面平面.
(Ⅱ)设于点,连结
是平面与平面的交线,
因为平面,所以.
的中点,所以的中点.
.
考点:1.线线,线面与面面垂直;2.线线与线面平行

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,侧面是边长为2的正三角形,且与底面垂直,底面的菱形,的中点.

(Ⅰ)求与底面所成角的大小;
(Ⅱ)求证:平面;(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=,PA=,∠ABC=120°,G为线段PC的中点.

(1)证明:PA//平面BGD;
(2)求直线DG与平面PAC所成的角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知四棱锥中,底面是直角梯形,平面. 
(Ⅰ)求证:平面
(Ⅱ)求证:平面
(Ⅲ)若的中点,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱中,侧面均为正方形,∠,点是棱的中点.

(Ⅰ)求证:⊥平面
(Ⅱ)求证:平面
(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱中,,且中点.

(I)求证:平面
(Ⅱ)求证:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知三棱锥的侧棱两两垂直,且的中点.

(1)求点到面的距离;
(2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知中,的中点,分别在线段上的动点,且,把沿折起,如下图所示,

(Ⅰ)求证:平面
(Ⅱ)当二面角为直二面角时,是否存在点,使得直线与平面所成的角为,若存在求的长,若不存在说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,且AD∥BC,∠ABC=∠PAD=90°,侧面PAD⊥底面ABCD,若PA=AB=BC=,AD=1.

(I)求证:CD⊥平面PAC;
(II)求二面角A-PD-C的余弦值.

查看答案和解析>>

同步练习册答案