如图,棱柱的侧面是菱形,
(Ⅰ)证明:平面平面;
(Ⅱ)设是上的点,且平面,求的值.
(Ⅰ)详见解析;(Ⅱ)
解析试题分析:(Ⅰ)由题中侧面是菱形,可见它的对角线相互垂直,即,再加上所给的条件,这样就出现了一条直线同时与两条直线垂直,而这两条直线确定了要证的两个平面中一个平面,即平面,根据直线与平面垂直的判定定理可证得平面,最后由平面与平面垂直的判定定理,可以得证; (Ⅱ)由(Ⅱ)中的条件平面,由直线与平面平行的性质定理,可构造出一个过的平面,即为图中的平面 ,然后在中,由菱形知 为一边中点,再结合三角形中位线不难得出 为的中点,这样得到
试题解析:解:(Ⅰ)因为侧面是菱形,所以
又已知
所又平面,又平面,
所以平面平面.
(Ⅱ)设交于点,连结,
则是平面与平面的交线,
因为平面,所以.
又是的中点,所以为的中点.
即.
考点:1.线线,线面与面面垂直;2.线线与线面平行
科目:高中数学 来源: 题型:解答题
如图,四棱锥中,侧面是边长为2的正三角形,且与底面垂直,底面是的菱形,为的中点.
(Ⅰ)求与底面所成角的大小;
(Ⅱ)求证:平面;(Ⅲ)求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P-ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=,PA=,∠ABC=120°,G为线段PC的中点.
(1)证明:PA//平面BGD;
(2)求直线DG与平面PAC所成的角的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知中,,,为的中点,分别在线段上的动点,且,交于,把沿折起,如下图所示,
(Ⅰ)求证:平面;
(Ⅱ)当二面角为直二面角时,是否存在点,使得直线与平面所成的角为,若存在求的长,若不存在说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,且AD∥BC,∠ABC=∠PAD=90°,侧面PAD⊥底面ABCD,若PA=AB=BC=,AD=1.
(I)求证:CD⊥平面PAC;
(II)求二面角A-PD-C的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com