精英家教网 > 高中数学 > 题目详情

如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,且AD∥BC,∠ABC=∠PAD=90°,侧面PAD⊥底面ABCD,若PA=AB=BC=,AD=1.

(I)求证:CD⊥平面PAC;
(II)求二面角A-PD-C的余弦值.

(I)见解析;(II).

解析试题分析:(I)先根据已知条件证明,那么就有,在根据题中已知边的长度,由勾股定理证明,根据直线与平面垂直的判定定理即可证明;(II)设中点,连结,过,证明是二面角的平面角.再由,解得的值,求的余弦值即可.
试题解析:(I)∵,∴.
又∵,且

,∴.                             3分
在底面中,∵
,有,∴.
又∵, ∴.                     6分
(II)设中点,连结,则.

又∵
,∴.
,∴.

,∴
,∴是二面角的平面角.          9分
由已知得, ∴.
得,,∴

.
即二面角的余弦值为.                           12分
考点:1、直线与平面垂直的判定定理;2、勾股定理的应用;3、构造二面角;4、平面与平面垂直的性质定理;5、解三角形.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,棱柱的侧面是菱形,

(Ⅰ)证明:平面平面
(Ⅱ)设上的点,且平面,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(如图1)在平面四边形中,中点,,且,现沿折起使,得到立体图形(如图2),又B为平面ADC内一点,并且ABCD为正方形,设F,G,H分别为PB,EB,PC的中点.

(1)求三棱锥的体积;
(2)在线段PC上是否存在一点M,使直线与直线所成角为?若存在,求出线段的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在斜三棱柱ABC-A1B1C1中,侧面AA1B1B⊥底面ABC,侧棱AA1与底面ABC成60°的 角,AA1=2.底面ABC是边长为2的正三角形,其重心为G点,E是线段BC1上一点,且BE=3(1)BC1.

(1)求证:GE∥侧面AA1B1B;
(2)求平面B1GE与底面ABC所成锐二面角的正切值;
(3)求点B到平面B1GE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.

(1) 证明:BD⊥平面PAC;
(2) 若AD=2,当PC与平面ABCD所成角的正切值为时,求四棱锥P-ABCD的外接球表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)如图,ABC在平面外,AB∩=P,BC∩=Q,AC∩=R,求证:P,Q,R三点共线.

(2)如图,空间四边形ABCD中,E,F分别是AB和CB上的点,G,H分别是CD和AD上的点,  且EH与FG相交于点K. 求证:EH,BD,FG三条直线相交于同一点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图棱柱的侧面是菱形,,D是的中点,证明:

(Ⅰ)∥面
(Ⅱ)平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

正方形与梯形所在平面互相垂直,,点在线段上且不与重合。

(Ⅰ)当点M是EC中点时,求证:BM//平面ADEF;
(Ⅱ)当平面BDM与平面ABF所成锐二面角的余弦值为时,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在六面体ABCDEFG中,平面ABC∥平面DEFG,AD⊥平面DEFG,ED⊥DG,EF∥DG.且AB=AD=DE=DG=2,AC=EF=1.  (1)求证:BF∥平面ACGD; (2)求二面角D­CG­F的余弦值.

查看答案和解析>>

同步练习册答案