已知
中,
,
,
为
的中点,
分别在线段
上的动点,且
,
交
于
,把
沿
折起,如下图所示,![]()
(Ⅰ)求证:
平面
;
(Ⅱ)当二面角
为直二面角时,是否存在点
,使得直线
与平面
所成的角为
,若存在求
的长,若不存在说明理由。![]()
(Ⅰ)详见解析;(Ⅱ)存在,且
.
解析试题分析:(Ⅰ)这是一个折叠问题,做这一类题,需比较折叠前的图形与折叠后的图形,找那些量发生变化,那些量没发生变化,本题求证:
平面
,证明线面平行,可先证线线平行,也可先证面面平行,注意到,
,
,可证面面平行,即证平面
//平面
即可;(Ⅱ)当二面角
为直二面角时,是否存在点
,使得直线
与平面
所成的角为
,此属探索性命题,解此类题一般都先假设存在,若求出线段长,就存在,否则就不存在,此题因为二面角
为直二面角,则
平面
,故
与平面
所成角为
,求出
的长,从而得
,故存在点
,且
.
试题解析:(Ⅰ)
,又
为
的中点
,又
2分
在空间几何体
中,
,则
平面
,
,则
平面
,
平面
//平面
,
平面
6分
(Ⅱ)∵二面角
为直二面角,
平面
平面![]()
,
平面
, 8分
在平面
内的射影为
,
与平面
所成角为
,
10分
由于![]()
,
,
12分
考点:线面平行的判断,直线与平面所成的角.
科目:高中数学 来源: 题型:解答题
如图,四棱柱
的底面
是平行四边形,且
底面
,
,
,
°,点
为
中点,点
为
中点.![]()
(Ⅰ)求证:平面
平面
;
(Ⅱ)设二面角
的大小为
,直线
与平面
所成的角为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知三棱锥
的侧棱
两两垂直,且
,
,
是
的中点。![]()
(1)求异面直线
与
所成角的余弦值;
(2)求直线
和平面
的所成角的正弦值。
(3)求点E到面ABC的距离。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.![]()
(1)证明:B1C1⊥CE;
(2)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为
.求线段AM的长.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(如图1)在平面四边形
中,
为
中点,
,
,且
,现沿
折起使
,得到立体图形(如图2),又B为平面ADC内一点,并且ABCD为正方形,设F,G,H分别为PB,EB,PC的中点.![]()
(1)求三棱锥
的体积;
(2)在线段PC上是否存在一点M,使直线
与直线
所成角为
?若存在,求出线段的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在斜三棱柱ABC-A1B1C1中,侧面AA1B1B⊥底面ABC,侧棱AA1与底面ABC成60°的 角,AA1=2.底面ABC是边长为2的正三角形,其重心为G点,E是线段BC1上一点,且BE=3BC1.![]()
![]()
(1)求证:GE∥侧面AA1B1B;
(2)求平面B1GE与底面ABC所成锐二面角的正切值;
(3)求点B到平面B1GE的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
正方形
与梯形
所在平面互相垂直,
,
,点
在线段
上且不与
重合。![]()
(Ⅰ)当点M是EC中点时,求证:BM//平面ADEF;
(Ⅱ)当平面BDM与平面ABF所成锐二面角的余弦值为
时,求三棱锥
的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com