精英家教网 > 高中数学 > 题目详情

如图,已知四棱锥中,底面是直角梯形,平面. 
(Ⅰ)求证:平面
(Ⅱ)求证:平面
(Ⅲ)若的中点,求三棱锥的体积.

证明过程详见试题解析.

解析试题分析:(Ⅰ)要证明直线与平面平行,就是要证明直线与平面内一条直线平行,根据题意显然直线满足要求. (Ⅱ)要证明平面,就是要证明直线与平面内两条相交直线垂直.根据题意符合要求.(Ⅲ)要求三棱锥的体积,就是要求出的面积以及三棱锥的高.
试题解析:(Ⅰ)证明:,且平面
平面
(Ⅱ)证明:在直角梯形中,过于点,则四边形为矩形
,又,∴,在Rt△中,

,则

 ∴
 ∴平面 
(Ⅲ)∵中点,
到面的距离是到面距离的一半

考点:线面平行,线面垂直,三棱锥体积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在长方体中,, E、 分别为的中点.

(1)求证:平面
(2)求证:平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱柱的底面是平行四边形,且底面°,点中点,点中点.

(Ⅰ)求证:平面平面
(Ⅱ)设二面角的大小为,直线与平面所成的角为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知在直三棱柱ABC-A1B1C1中,AB=4,AC=BC=3,D为AB的中点.

(Ⅰ)求异面直线CC1和AB的距离;
(Ⅱ)若AB1⊥A1C,求二面角A1-CD-B1的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=1.

(1)求异面直线B1C1与AC所成角的大小;
(2)若该直三棱柱ABC-A1B1C1的体积为,求点A到平面A1BC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱中,

(1)求证:
(2)若 ,在棱上确定一点P, 使二面角的平面角的余弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,棱柱的侧面是菱形,

(Ⅰ)证明:平面平面
(Ⅱ)设上的点,且平面,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知三棱锥的侧棱两两垂直,且的中点。

(1)求异面直线所成角的余弦值;
(2)求直线和平面的所成角的正弦值。
(3)求点E到面ABC的距离。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在斜三棱柱ABC-A1B1C1中,侧面AA1B1B⊥底面ABC,侧棱AA1与底面ABC成60°的 角,AA1=2.底面ABC是边长为2的正三角形,其重心为G点,E是线段BC1上一点,且BE=3(1)BC1.

(1)求证:GE∥侧面AA1B1B;
(2)求平面B1GE与底面ABC所成锐二面角的正切值;
(3)求点B到平面B1GE的距离.

查看答案和解析>>

同步练习册答案