精英家教网 > 高中数学 > 题目详情

如图,在三棱柱中,

(1)求证:
(2)若 ,在棱上确定一点P, 使二面角的平面角的余弦值为

(1)详见解析; (2)P为棱的中点.

解析试题分析:(1)要证,可转化为去证明垂直于含有的平面,再由题中所给线面垂直,结合面面垂直的判定定理,可以判断得出,最后结合面面垂直的性质定理,由题中所给线线垂直,可以得到,进而不难证得;(2)由题意可知点处可以构造出三条线两两垂直,故可选择以点为坐标原点建立空间直角坐标系,这样图中的坐标,由点在线段上,可转化为从而用一个变量表示出点的坐标,求出这两个平面的法向量,运用向量数量积公式可计算出这两个法向量的夹角的余弦值,并由此而求出的值,从而确定出点的位置.
试题解析:(1)在三棱柱中,因为平面,所以平面平面,                 (2分)
因为平面平面,所以平面,所以. (4分)
(2)设平面的一个法向量为,因为
所以
,                    (10分)
而平面的一个法向量是
,解得,即P为棱的中点. (12分)
考点:1.线线,线面和面面垂直;2.二面角的处理落实

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图所示,已知AB为圆O的直径,点D为线段AB上一点,且,点C为圆O上一点,且.点P在圆O所在平面上的正投影为点D,PD=DB.

(1)求证:平面
(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图四棱锥中,底面是平行四边形,平面,垂足为上且的中点,四面体的体积为.

(1)求过点P,C,B,G四点的球的表面积;
(2)求直线到平面所成角的正弦值;
(3)在棱上是否存在一点,使,若存在,确定点的位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在长方体中,为线段中点.

(1)求直线与直线所成的角的余弦值;
(2)若,求二面角的大小;
(3)在棱上是否存在一点,使得平面?若存在,求的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知四棱锥中,底面是直角梯形,平面. 
(Ⅰ)求证:平面
(Ⅱ)求证:平面
(Ⅲ)若的中点,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱中,底面△为等腰直角三角形,为棱上一点,且平面⊥平面.

(Ⅰ)求证:为棱的中点;(Ⅱ)为何值时,二面角的平面角为.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱中,,且中点.

(I)求证:平面
(Ⅱ)求证:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知四棱锥P-ABCD,底面ABCD是、边长为的菱形,又,且PD=CD,点M、N分别是棱AD、PC的中点.

(1)证明:MB平面PAD;
(2)求点A到平面PMB的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在斜三棱柱中,侧面⊥底面,侧棱与底面的角,.底面是边长为2的正三角形,其重心为点,是线段上一点,且

(Ⅰ)求证://侧面
(Ⅱ)求平面与底面所成锐二面角的正切值.

查看答案和解析>>

同步练习册答案