如图,在三棱柱
中,
.![]()
(1)求证:
;
(2)若
,在棱
上确定一点P, 使二面角
的平面角的余弦值为
.
(1)详见解析; (2)P为棱
的中点.
解析试题分析:(1)要证
,可转化为去证明
垂直于含有
的平面
,再由题中所给线面垂直
,结合面面垂直的判定定理,可以判断得出
,最后结合面面垂直的性质定理,由题中所给线线垂直
,可以得到
,进而不难证得
;(2)由题意可知点
处可以构造出三条线两两垂直,故可选择以点
为坐标原点建立空间直角坐标系,这样图中
的坐标,由点
在线段
上,可转化为
从而用一个变量
表示出点
的坐标,求出这两个平面的法向量,运用向量数量积公式可计算出这两个法向量的夹角的余弦值,并由此而求出
的值,从而确定出点
的位置.
试题解析:(1)在三棱柱
中,因为
,
平面
,所以平面
平面
, (2分)
因为平面
平面
,
,所以
平面
,所以
. (4分)
(2)设平面
的一个法向量为
,因为
,
,
即
所以![]()
令
得
, (10分)
而平面
的一个法向量是
,
则
,解得
,即P为棱
的中点. (12分)
考点:1.线线,线面和面面垂直;2.二面角的处理落实
科目:高中数学 来源: 题型:解答题
如图所示,已知AB为圆O的直径,点D为线段AB上一点,且
,点C为圆O上一点,且
.点P在圆O所在平面上的正投影为点D,PD=DB.![]()
(1)求证:
平面
;
(2)求点
到平面
的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图四棱锥
中,底面
是平行四边形,
平面
,垂足为
,
在
上且
,
,
,
是
的中点,四面体
的体积为
.![]()
(1)求过点P,C,B,G四点的球的表面积;
(2)求直线
到平面
所成角的正弦值;
(3)在棱
上是否存在一点
,使![]()
![]()
,若存在,确定点
的位置,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在长方体
中,
为线段
中点.![]()
(1)求直线
与直线
所成的角的余弦值;
(2)若
,求二面角
的大小;
(3)在棱
上是否存在一点
,使得
平面
?若存在,求
的长;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知四棱锥P-ABCD,底面ABCD是
、边长为
的菱形,又
,且PD=CD,点M、N分别是棱AD、PC的中点.![]()
(1)证明:MB
平面PAD;
(2)求点A到平面PMB的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在斜三棱柱
中,侧面
⊥底面
,侧棱
与底面
成
的角,
.底面
是边长为2的正三角形,其重心为
点,
是线段
上一点,且
.![]()
(Ⅰ)求证:
//侧面
;
(Ⅱ)求平面
与底面
所成锐二面角的正切值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com