已知四棱锥P-ABCD,底面ABCD是、边长为的菱形,又,且PD=CD,点M、N分别是棱AD、PC的中点.
(1)证明:MB平面PAD;
(2)求点A到平面PMB的距离.
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900.
(1)求证:PC⊥BC;
(2)求点A到平面PBC的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知三棱锥的侧棱两两垂直,且,,是的中点。
(1)求异面直线与所成角的余弦值;
(2)求直线和平面的所成角的正弦值。
(3)求点E到面ABC的距离。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,是以为直径的半圆上异于点的点,矩形所在的平面垂直于该半圆所在平面,且
(Ⅰ).求证:;
(Ⅱ).设平面与半圆弧的另一个交点为,
①.求证://;
②.若,求三棱锥E-ADF的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四边形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2.又AC=1,∠ACB=120°,AB⊥PC,直线AM与直线PC所成的角为60°.
(1)求证:PC⊥AC;
(2)求二面角M﹣AC﹣B的余弦值;
(3)求点B到平面MAC的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com