如图,是以为直径的半圆上异于点的点,矩形所在的平面垂直于该半圆所在平面,且
(Ⅰ).求证:;
(Ⅱ).设平面与半圆弧的另一个交点为,
①.求证://;
②.若,求三棱锥E-ADF的体积.
(Ⅰ);(Ⅱ)①//;②.
解析试题分析:(1)证明线线垂直,则可转化为线面垂直,由于圆周角的定义,则知,由矩形所在的平面垂直于该半圆所在平面,及面面垂直性质定理得面,则可得平面平面
根据垂直的有关性质定理,则可得平面,故
(2)①证明线线平行,则可用过平面的一个平行线作于该平面相交的平面,则该直线与交线平行由,得平面,又由平面平面于直线,则根据线面平行的性质定理得 ,由平行的传递性得 ;②则体积可以用多种方法,有直接求法、割补法、转化法,对于此题可转化后用直接求法,求三棱锥E-ADF先转化;根据三棱锥的体积公式,则有
试题解析:
是半圆上异于的点,
又 矩形所在的平面垂直于该半圆所在平面由面面垂直性质定理得面
平面平面 平面,故 .
(2)① 由,得平面,又平面平面于直线
根据线面平行的性质定理得 ,
故 ,②.
考点:1.立体几何的平行垂直的证明,2.立体几何体积的求解.
科目:高中数学 来源: 题型:解答题
如图,已知四棱锥P-ABCD的底面为菱形,且∠ABC =60°,AB=PC=2,AP=BP=.
(Ⅰ)求证:平面PAB⊥平面ABCD ;
(Ⅱ)求二面角A-PC-D的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知四棱锥P-ABCD,底面ABCD是、边长为的菱形,又,且PD=CD,点M、N分别是棱AD、PC的中点.
(1)证明:MB平面PAD;
(2)求点A到平面PMB的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四棱锥的底面是正方形,,点在棱上.
(1)求证:平面平面;
(2)当,且时,确定点的位置,即求出的值.
(3)在(2)的条件下若F是PD的靠近P的一个三等分点,求二面角A-EF-D的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,边长为2的正方形ABCD,E,F分别是AB,BC的中点,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于.
(1)求证:⊥EF;
(2)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥中,底面ABCD是正方形,侧棱底面ABCD,,E是PC的中点.
(Ⅰ)证明 平面EDB;
(Ⅱ)求EB与底面ABCD所成的角的正切值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com