精英家教网 > 高中数学 > 题目详情

如图,边长为2的正方形ABCD,E,F分别是AB,BC的中点,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于.

(1)求证:⊥EF;
(2)求二面角的平面角的余弦值.

(1)见解析;(2).

解析试题分析:(1)先根据正方形的特征得到 ,再根据点的重合得到 ,由直线与平面垂直的判定定理可知, ,再由直线与平面垂直的性质定理得到 ;(2)先取的中点,连,由等腰三角形底边上的三线合一以及勾股定理证明,所以是二面角的平面角,再根据已知的边的长度
试题解析:(1)证明:∵是正方形,
,        ..2分
,       .3分
,              . 4分
,             5分
,            .6分
.                      7分
(2)取的中点,连,如图所示:

则在中,∵
,                .8分

,                .. 9分
所以是二面角的平面角,         10分
中,
,∴,         ..11分
,∴,又,∴,   .12分
,          .13分
所以二面角的平面角的余弦值是.        14分
考点:1.直线与平面垂直的判定定理;2.直线与平面垂直的性质定理;3.解三角形;4.二面角及求法;5.勾股定理

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,平面为侧棱上一点,它的正(主)视图和侧(左)视图如图所示.

(1)证明:平面
(2)在的平分线上确定一点,使得平面,并求此时的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是以为直径的半圆上异于点的点,矩形所在的平面垂直于该半圆所在平面,且

(Ⅰ).求证:
(Ⅱ).设平面与半圆弧的另一个交点为,
①.求证://;
②.若,求三棱锥E-ADF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图在四棱锥中,底面是边长为的正方形,侧面底面,且,设分别为的中点.

(1)求证://平面
(2)求证:面平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2.又AC=1,∠ACB=120°,AB⊥PC,直线AM与直线PC所成的角为60°.

(1)求证:PC⊥AC;
(2)求二面角M﹣AC﹣B的余弦值;
(3)求点B到平面MAC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱中, D是 AC的中点。

求证://平面 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,底面, 的中点,.

(1)求证:平面
(2)求点到平面的距离。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,底面为直角梯形的四棱锥中,AD∥BC,平面,BC=6.

(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,,平面底面中点,M是棱PC上的点,

(1)若点M是棱PC的中点,求证:平面
(2)求证:平面底面
(3)若二面角M-BQ-C为,设PM=tMC,试确定t的值.

查看答案和解析>>

同步练习册答案