精英家教网 > 高中数学 > 题目详情

如图,在三棱柱中, D是 AC的中点。

求证://平面 

证明略

解析试题分析:要证直线与平面平行,根据线面平行判定定理要转化为直线与直线平行,如图本题中不难发现点E为B1C的中点,帮DE为三角形AB1C的中位线.此题是一道位置关系证明题,要证直线与平面平行,根据判定定理不难得到转化为直线与直线平行,往往有两种构造手段:一是得用三角形中位线;二是由平行四边形的平行关系。如本题就是第一种.
试题解析:连接BC交BC于点E,连接DE.则E为B1C的中点,故DE是三角形AB1C的中位线,则DE//AB1,又因为 ,所以://平面

考点:1、直线与平面平行;2、直线与直线平行;3、三角形中位线.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,已知四棱锥,底面是平行四边形,点在平面上的射影边上,且

(Ⅰ)设的中点,求异面直线所成角的余弦值;
(Ⅱ)设点在棱上,且.求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面是正方形,,点在棱上.

(1)求证:平面平面
(2)当,且时,确定点的位置,即求出的值.
(3)在(2)的条件下若F是PD的靠近P的一个三等分点,求二面角A-EF-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知四棱锥E-ABCD的底面为菱形,且∠ABC=60°,AB=EC=2,AE=BE=,O为AB的中点.

(Ⅰ)求证:EO⊥平面ABCD;
(Ⅱ)求点D到平面AEC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,边长为2的正方形ABCD,E,F分别是AB,BC的中点,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于.

(1)求证:⊥EF;
(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直角梯形中,,过,垂足为.分别是的中点.现将沿折起,使二面角的平面角为.

(1)求证:平面平面
(2)求直线与面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,长方体中,,点E是AB的中点.

(1)证明:平面;
(2)证明:;
(3)求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在圆锥PO中, PO=,?O的直径AB=2, C为弧AB的中点,D为AC的中点.

(1)求证:平面POD^平面PAC;
(2)求二面角B—PA—C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面为菱形,其中的中点.

(1) 求证:
(2) 若平面平面,且的中点,求四棱锥的体积.

查看答案和解析>>

同步练习册答案