精英家教网 > 高中数学 > 题目详情

如图所示,在圆锥PO中, PO=,?O的直径AB=2, C为弧AB的中点,D为AC的中点.

(1)求证:平面POD^平面PAC;
(2)求二面角B—PA—C的余弦值.

(1)见解析;(2)

解析试题分析:(1)通过证平面PAC内直线AC^平面POD,由平面与平面垂直的判定定理得平面PAC^平面POD;(2)用垂面法作出二面角的平面角,然后在直角三角形中利用边长求平面角的余弦值.
试题解析:证明:(1)如图所示,连接OC.
OA=OC,D是AC的中点,\AC^OD,在圆锥PO中,PA=PC,
则AC^PD,又PDÇOD=D,\AC^平面POD,而ACÌ平面PAC,
\平面POD^平面PAC            5分

(2)在平面POD中,过O作OH^PD于H,由(1)知:
平面POD^平面PAC,\OH^平面PAC,过H作HG^PA于G,连OG,则OG^PA(三垂线定理)
\ÐOGH为二面角B—PA—C的平面角,
在RtDODA中,OD=OA×450=.
在RtDPOD中,OH= = =.
在RtDPOA中,OG= = =.
在RtDOHG中,sinÐOGH= = =.
所以,cosÐOGH= = = 
所以,二面角B—PA—C的余弦值为.          10分
考点:1.平面与平面垂直的判定;2.二面角的平面角作法与求法

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面为菱形,的中点.

(1)若,求证:平面平面
(2)点在线段上,,试确定的值,使平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱中, D是 AC的中点。

求证://平面 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

证明梯形是一个平面图形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,底面为直角梯形的四棱锥中,AD∥BC,平面,BC=6.

(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是圆的直径,垂直于圆所在的平面,是圆上的点.

(1)求证:平面平面
(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在等腰梯形中,是梯形的高,,现将梯形沿折起,使,且,得一简单组合体如图所示,已知分别为的中点.

(1)求证:平面
(2)求证:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱中,的中点.

(Ⅰ)求证: 平面
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,侧棱底面,底面为矩形,上一点,

(I)若的中点,求证平面
(II)求三棱锥的体积.

查看答案和解析>>

同步练习册答案