精英家教网 > 高中数学 > 题目详情

如图,在直三棱柱中,的中点.

(Ⅰ)求证: 平面
(Ⅱ)求二面角的余弦值.

(Ⅰ)详见解析;(Ⅱ)

解析试题分析:(Ⅰ)证明线面平行常用以下两种方法:一是用线面平行的判定定理,二是用面面平行的性质.本题用这两种方法都行;
(Ⅱ)首先应考虑作出平面截三棱柱所得的截面.作出该截面便很容易得到二面角的平面角即为.
本题也可用向量解决.
试题解析:(Ⅰ)法一:连结,交,连结,则,从而平面.
         
法二:取的中点,连结,易得平面,从而平面.
(Ⅱ)的中点,连结,易得平面就是平面,
平面,所以,所以就是该二面角的平面角.
.
考点:立体几何中线面平行的证明及二面角的计算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知四棱锥E-ABCD的底面为菱形,且∠ABC=60°,AB=EC=2,AE=BE=,O为AB的中点.

(Ⅰ)求证:EO⊥平面ABCD;
(Ⅱ)求点D到平面AEC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在圆锥PO中, PO=,?O的直径AB=2, C为弧AB的中点,D为AC的中点.

(1)求证:平面POD^平面PAC;
(2)求二面角B—PA—C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱锥P ABC中,已知PA⊥平面ABC,△ABC是边长为2的正三角形,D,E分别为PB,PC中点

(1)若PA=2,求直线AE与PB所成角的余弦值;
(2)若PA,求证:平面ADE⊥平面PBC

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在三棱拄中,侧面,已知.

(Ⅰ)求证:平面
(Ⅱ)试在棱(不包含端点)上确定一点的位置,使得
(Ⅲ)在(Ⅱ)的条件下,求和平面所成角正弦值的大小.                                    

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱柱的底面是平行四边形,且,,,的中点,平面.

(Ⅰ)证明:平面平面
(Ⅱ)若,试求异面直线所成角的余弦值;
(Ⅲ)在(Ⅱ)的条件下,试求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面为菱形,其中的中点.

(1) 求证:
(2) 若平面平面,且的中点,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱中,侧棱底面

(1)证明:平面
(2)若是棱的中点,在棱上是否存在一点,使平面?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,六棱锥的底面是边长为1的正六边形,底面
(Ⅰ)求证:平面平面
(Ⅱ)若直线PC与平面PDE所成角的正弦值为,求六棱锥高的大小。

查看答案和解析>>

同步练习册答案