精英家教网 > 高中数学 > 题目详情

如图,三棱锥P ABC中,已知PA⊥平面ABC,△ABC是边长为2的正三角形,D,E分别为PB,PC中点

(1)若PA=2,求直线AE与PB所成角的余弦值;
(2)若PA,求证:平面ADE⊥平面PBC

(1);(2) 

解析试题分析:(1)首先建立空间直角坐标系,给出相关点的坐标,利用空间向量求解;(2) 利用空间向量求解平面的法向量,然后根据法向量互相垂直可证明
试题解析:(1)如图,取AC的中点F,连接BF,则BF⊥AC 以A为坐标原点,过A且与FB平行的直线为x轴,AC为y轴,AP为z轴,建立空间直角坐标系

则A(0,0,0),B(,1,0), C(0,2,0),P(0,0,2),E(0,1,1),
从而=(,1, 2), =(0,1,1)  
设直线AE与PB所成角为θ,
则cosθ=||=
即直线AE与PB所成角的余弦值为                5分
(2)如上图,则
A(0,0,0),B(,1,0), C(0,2,0),P(0,0,),E(0,1,),
设平面PBC的法向量为,则

,则,所以
同理可求平面ADE的法向量
所以,即
于是平面ADE⊥平面PBC
考点:空间直角坐标系、空间向量、线线角以及面面垂直的证明

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.

(Ⅰ)证明:AB⊥A1C;
(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

证明梯形是一个平面图形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是圆的直径,垂直于圆所在的平面,是圆上的点.

(1)求证:平面平面
(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在等腰梯形中,是梯形的高,,现将梯形沿折起,使,且,得一简单组合体如图所示,已知分别为的中点.

(1)求证:平面
(2)求证:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面是直角梯形,是两个边长为的正三角形,的中点,的中点.

(Ⅰ)求证:平面
(Ⅱ)求证:平面
(Ⅲ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱中,的中点.

(Ⅰ)求证: 平面
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形为矩形,平面⊥平面上的一点,且⊥平面

(1)求证:
(2)求证:∥平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面为菱形,的中点。

(1)若,求证:平面
(2)点在线段上,,试确定的值,使

查看答案和解析>>

同步练习册答案