精英家教网 > 高中数学 > 题目详情

如图,四棱锥的底面是直角梯形,是两个边长为的正三角形,的中点,的中点.

(Ⅰ)求证:平面
(Ⅱ)求证:平面
(Ⅲ)求直线与平面所成角的正弦值.

(Ⅰ)详见解析;(Ⅱ) 详见解析;(Ⅲ) 直线与平面所成角的正弦值为.

解析试题分析:(I)利用两平面垂直的性质定理,证明BC平面AEC,再根据线面垂直的性质定理证明AEBC,根据勾股定理证明AEEC,利用线面垂直的判定定理证明AE平面BCEF;(II)三棱锥体积利用体积转换为以E为顶点,为底面的椎体体积求得. 等体积转化,是立体几何经常运用的一种方法,高考也考过.
试题解析:(Ⅰ)证明:设的中点,连接,则,∵,∴四边形为正方形,∵的中点,∴的交点,∵
,∴,在三角形中,,∴,∵,∴平面

(Ⅱ)方法1:连接,∵的中点,中点,∴,∵平面平面,∴平面.方法2:由(Ⅰ)知平面,又,所以过分别做的平行线,以它们做轴,以轴建立如图所示的空间直角坐标系,由已知得:,则.∴平面平面,∴平面;                              

(Ⅲ) 设平面的法向量为,直线

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱中,,点分别为的中点.

(1)证明:平面
(2)求所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,AC是圆O的直径,点B在圆O上,交AC于点M,EA⊥平面ABC,FC∥EA,AC=4,EA=3,FC=1,

(1)证明
(2)(文科)求三棱锥的体积
(理科)求平面和平面所成的锐二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面为正方形,底面分别是的中点.

(1)求证:平面
(2)求证:平面平面
(3)若,求与平面所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱锥P ABC中,已知PA⊥平面ABC,△ABC是边长为2的正三角形,D,E分别为PB,PC中点

(1)若PA=2,求直线AE与PB所成角的余弦值;
(2)若PA,求证:平面ADE⊥平面PBC

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直角梯形边上的中点(如图甲),,将沿折到的位置,使,点上,且(如图乙)

(Ⅰ)求证:平面ABCD.
(Ⅱ)求二面角E?AC?D的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱柱的底面是平行四边形,且,,,的中点,平面.

(Ⅰ)证明:平面平面
(Ⅱ)若,试求异面直线所成角的余弦值;
(Ⅲ)在(Ⅱ)的条件下,试求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是矩形,底面的中点,已知

求:(Ⅰ)三角形的面积;(II)三棱锥的体积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知多面体的底面是边长为的正方形,底面,且
(Ⅰ )求多面体的体积;
(Ⅱ )求证:平面EAB⊥平面EBC;
(Ⅲ)记线段CB的中点为K,在平面内过K点作一条直线与平面平行,要求保留作图痕迹,但不要求证明.

查看答案和解析>>

同步练习册答案