如图,四棱锥的底面是直角梯形,,,和是两个边长为的正三角形,,为的中点,为的中点.
(Ⅰ)求证:平面;
(Ⅱ)求证:平面;
(Ⅲ)求直线与平面所成角的正弦值.
(Ⅰ)详见解析;(Ⅱ) 详见解析;(Ⅲ) 直线与平面所成角的正弦值为.
解析试题分析:(I)利用两平面垂直的性质定理,证明BC平面AEC,再根据线面垂直的性质定理证明AEBC,根据勾股定理证明AEEC,利用线面垂直的判定定理证明AE平面BCEF;(II)三棱锥体积利用体积转换为以E为顶点,为底面的椎体体积求得. 等体积转化,是立体几何经常运用的一种方法,高考也考过.
试题解析:(Ⅰ)证明:设为的中点,连接,则,∵,,,∴四边形为正方形,∵为的中点,∴为的交点,∵, ,
∵,∴,,在三角形中,,∴,∵,∴平面;
(Ⅱ)方法1:连接,∵为的中点,为中点,∴,∵平面,平面,∴平面.方法2:由(Ⅰ)知平面,又,所以过分别做的平行线,以它们做轴,以为轴建立如图所示的空间直角坐标系,由已知得:,,,,,,则,,,.∴∴∵平面,平面,∴平面;
(Ⅲ) 设平面的法向量为,直线
科目:高中数学 来源: 题型:解答题
如图,AC是圆O的直径,点B在圆O上,,交AC于点M,EA⊥平面ABC,FC∥EA,AC=4,EA=3,FC=1,
(1)证明;
(2)(文科)求三棱锥的体积
(理科)求平面和平面所成的锐二面角的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,三棱锥P ABC中,已知PA⊥平面ABC,△ABC是边长为2的正三角形,D,E分别为PB,PC中点
(1)若PA=2,求直线AE与PB所成角的余弦值;
(2)若PA,求证:平面ADE⊥平面PBC
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知直角梯形,是边上的中点(如图甲),,,,将沿折到的位置,使,点在上,且(如图乙)
(Ⅰ)求证:平面ABCD.
(Ⅱ)求二面角E?AC?D的余弦值
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四棱柱的底面是平行四边形,且,,,为的中点,平面.
(Ⅰ)证明:平面平面;
(Ⅱ)若,试求异面直线与所成角的余弦值;
(Ⅲ)在(Ⅱ)的条件下,试求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知多面体的底面是边长为的正方形,底面,,且.
(Ⅰ )求多面体的体积;
(Ⅱ )求证:平面EAB⊥平面EBC;
(Ⅲ)记线段CB的中点为K,在平面内过K点作一条直线与平面平行,要求保留作图痕迹,但不要求证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com