精英家教网 > 高中数学 > 题目详情

如图,在直三棱柱中,,点分别为的中点.

(1)证明:平面
(2)求所成的角.

(1)证明过程详见解析;(2).

解析试题分析:本题主要以直三棱柱为几何背景,考查空间两条直线的位置关系、二面角、直线与平面的位置关系等基础知识,考查用空间向量解决立体几何问题的方法,考查空间想象能力、运算能力和推理论证能力.第一问,根据线面平行的判定定理,先在面内找到线,从而证明平面;第二问,由第一问,,所以所成的角为.
试题解析:(1)连接

由题意知,点分别为的中点,∴
平面平面
平面,      5分
(2)连接,因为为正方形,所以,由(1),所以所成的角为.      12分
考点:1.线面平行的判定;2.线线垂直.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分14分)如图,在四面体A?BCD中,AD^平面BCD,BC^CD,AD=2,BD=2.M是AD的中点.

(1)证明:平面ABC平面ADC;
(2)若ÐBDC=60°,求二面角C?BM?D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直棱柱中,分别是的中点,.

⑴证明:;
⑵求EC与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直三棱柱中,分别是棱的中点,点在棱上,已知

(1)求证:平面
(2)设点在棱上,当为何值时,平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.

(Ⅰ)证明:AB⊥A1C;
(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

直三棱柱ABC-A1B1C1中,AB=5,AC=4,BC=3,AA1=4,D是AB的中点.

(1)求证:AC⊥B1C;
(2)求证:AC1∥平面B1CD;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,四棱锥中,底面是个边长为的正方形,侧棱底面,且的中点.

(I)证明:平面
(II)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,且AD∥BC,∠ABC=∠PAD=90°,侧面PAD⊥底面ABCD,若PA=AB=BC=,AD=1.

(I)求证:CD⊥平面PAC;
(II)侧棱PA上是否存在点E,使得BE∥平面PCD?若存在,指出点E的位置,并证明,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面是直角梯形,是两个边长为的正三角形,的中点,的中点.

(Ⅰ)求证:平面
(Ⅱ)求证:平面
(Ⅲ)求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案